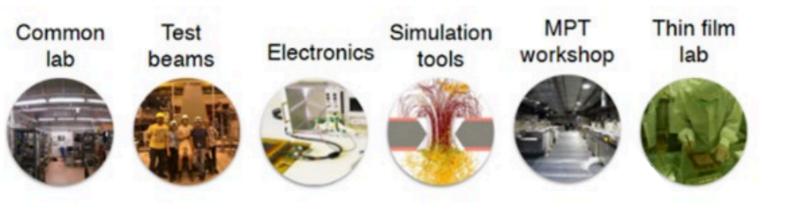

Toward the DRD1 Gaseous Detector Collaboration

Francesco Renga INFN Roma

The DRD prototype: RD51

 A technology-oriented collaboration on micropattern gaseous detectors (MPGD)


Motivation and Main Objectives: Technology-Based Collaboration Optimize communication and sharing of knowledge/experience/results, Develop and share common infrastructure (test-beam & irradiation facilities at CERN, production and test facilities) Develop common "internal test and quality standards" Setup a common platform/software package for gas detector simulation Share investment of common projects (e.g. technology development, electronics development, submissions/production) Collaboration with Industrial Partners 17/04/2008 RD51 Collaboration Meeting, Amsterdam, April 16-18 Maxim Titov

- Jan 2006 (CERN) Micro-pattern Gas Detectors: status and perspectives (<u>https://indico.cern.ch/event/473/</u>)
- Sept 2007 (CERN) Micro Pattern Gas Detectors. Towards an R&D Collaboration. (<u>https://indico.cern.ch/event/16213/</u>)
- Apr 2008 (Nikhef) Micro-Pattern Gas Detectors (RD-51) Workshop (<u>https://www.nikhef.nl/pub/conferences/rd51/</u>) 1st Proposal (draft)
- July 2008, CERN, 94th LHCC, Proposal presented @ LHCC open session (https://indico.cern.ch/event/36159/)
- Sept 2008, CERN, 95th LHCC, Meeting with Referees (<u>http://cdsweb.cern.ch/record/1132796/files/LHCC-095.pdf</u>) (*).
- Oct 2008, Paris, 2nd RD51 Collaboration Meeting (<u>https://indico.cern.ch/event/35172/timetable/?view=standard</u>)
- Dec 2008, CERN, 186th Research Board, Approval (<u>https://cds.cern.ch/record/1143639/files/M-186.pdf</u>)(**).

The main RD51 assets:

Networking & Common Tools and Infrastructures

- 2 yearly collaboration meetings + mini-weeks
- MPGD Conference series
- MPGD2022 7th International Conference on Micro Pattern Gaseous Detectors (Rehovot, Israel)
- MPGD2019 6th International Conference on Micro Pattern Gaseous Detectors (La Rochelle, France)
- MPGD2017 5th International Conference on Micro Pattern Gaseous Detectors (Philadelphia, USA)
- MPGD2015 4th International Conference on Micro Pattern Gaseous Detectors (Trieste, Italy)
- MPGD2013 3rd International Conference on Micro Pattern Gaseous Detectors (Zaragoza, Spain)
- MPGD2011 2nd International Conference on Micro Pattern Gaseous Detectors (Kobe, Japan)
- MPGD2009 1st International Conference on Micro Pattern Gaseous Detectors (Kolympari, Crete)
- R&D tools, facilities and infrastructures

The new CERN Micro Pattern Technology (MPT) Workshop

The main RD51 assets:

Networking & Common Tools and Infrastructures

- 2 yearly collaboration meetings + mini-weeks
- MPGD Conference series
- MPGD2022 7th International Conference on Micro Pattern Gaseous Detectors (Rehovot, Israel)
- MPGD2019 6th International Conference on Micro Pattern Gaseous Detectors (La Rochelle, France)
- MPGD2017 5th International Conference on Micro Pattern Gaseous Detectors (Philadelphia, USA)
- MPGD2015 4th International Conference on Micro Pattern Gaseous Detectors (Trieste, Italy)
- MPGD2013 3rd International Conference on Micro Pattern Gaseous Detectors (Zaragoza, Spain)
- MPGD2011 2nd International Conference on Micro Pattern Gaseous Detectors (Kobe, Japan)
- MPGD2009 1st International Conference on Micro Pattern Gaseous Detectors (Kolympari, Crete)
- R&D tools, facilities and infrastructures

Scalable Readout System (SRS)

RD51 organization

> 90 institutions > 400 participants > 30 countries

RD51 – Micropattern Gas Detectors WG1 WG4 WG7 WG3 WG6 WG2 WG5 MPGD Technology Software & Common Test Characterization Applications Electronics Production & New Structures Simulation **Facilitites** Common test Design stan dards Development of Readout Sharing of optimization Evaluation and common **Development** el ectron ic s common Characterization optimization software and of cost-effective optimization and infrastructure Development of and understanding for specific documentation technologies and integration with for detector applications for MPGD new geometries of physical industrialization MPGD detectors characterization and techniques phenomena in si mulations MPGD Track ing and **FE** electronics Common Test Triggering requirements Large Area Standards Algo rithms Common definition MPGDs Photon Production Detection Facility Testbeam **General Purpose** Facility Discharge **Calorimetry** Pixel Chip Protection De sign Tasks Simulation Optimization Cryogenic Improve ments Large Area New Geometries Detectors Ageing & Systems with Fabrication Radiation **Pixel Readout** Industrialization X-Ray and Neutron Har dne ss Imaging Common Platform Development **Astroparticle** (Root, Geant4) Portable Multiof Rad-Hard Charging up Physics Appl. and Rate Channel System Detectors Irradiation Cap ability Me dical Facility Collaboration Applications with Development Discharge Electronics Study of Avalan che Synchrotron Rad. Industrial Partners of Portable Protection Modeling Statistics. Plasma Diagn. Detectors Strategies Homeland Sec.

Objectives

5

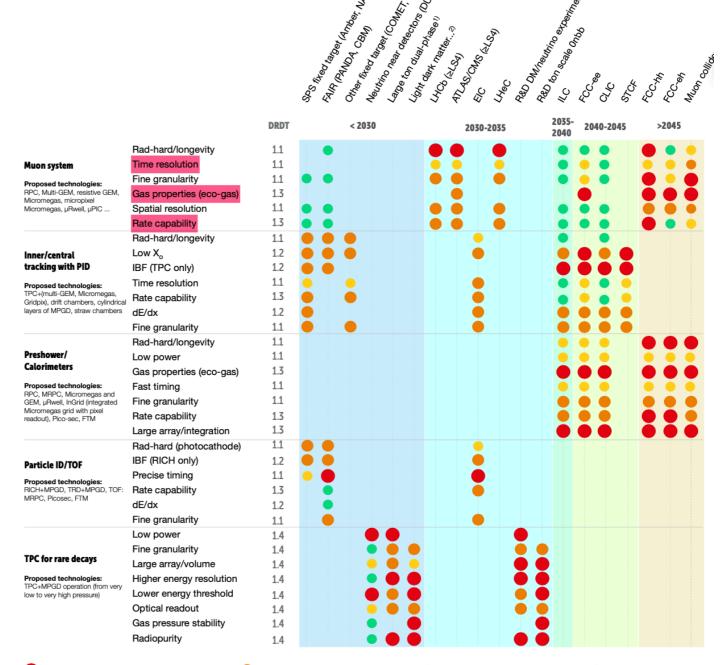
Toward DRD1 - The ECFA roadmap

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with long-term stability.

DRDT 1.2 - Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different readout schemes.

DRDT 1.3 - Develop environmentally friendly gaseous detectors for very large areas with high-rate capability.

DRTD 1.4 - Achieve high sensitivity in both low and high-pressure TPCs.


Muon systems

Inner/central tracking with PID

Preshower/Calorimeters

Particle ID/TOF

TPC for rare events

Must happen or main physics goals cannot be met

Important to meet several physics goals

sics goals 🛛 😑 Desirable to enhance physics reach

🔵 R&D needs being met

Muon systems

Inner/central tracking with PID

Preshower/Calorimeters

Particle ID/TOF

TPC for rare events

What: MPGD, RPC

Why:

Cost-effective, large-area coverage with low material budget, high detection efficiency and precision timing

Challenges:

Rate capability above O(MHz/cm²) Miniaturization of readout elements Eco-friendly gas mixtures

Innovations:

µTPC mode Diamond-like Carbon

Muon systems

Inner/central tracking with PID

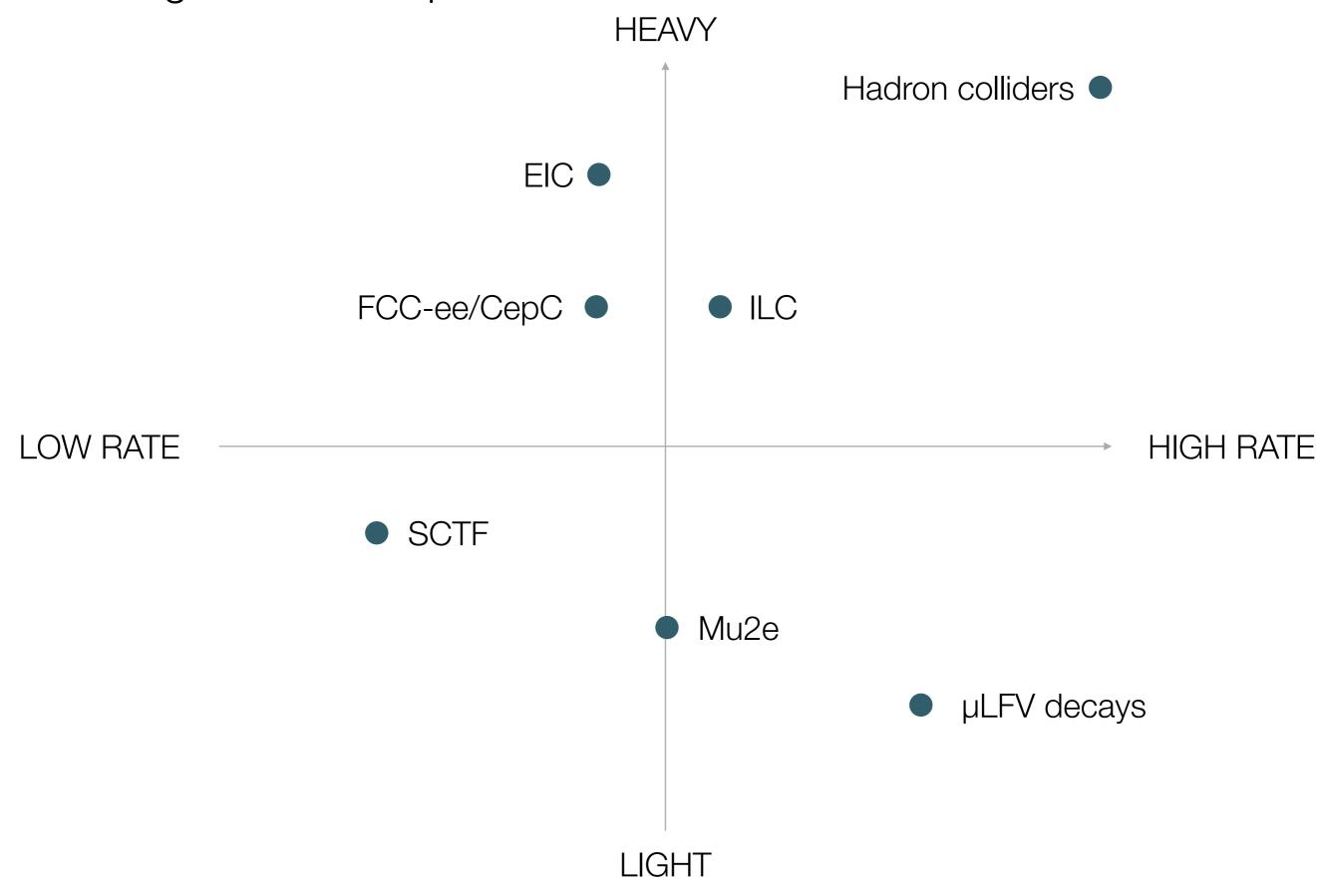
Preshower/Calorimeters

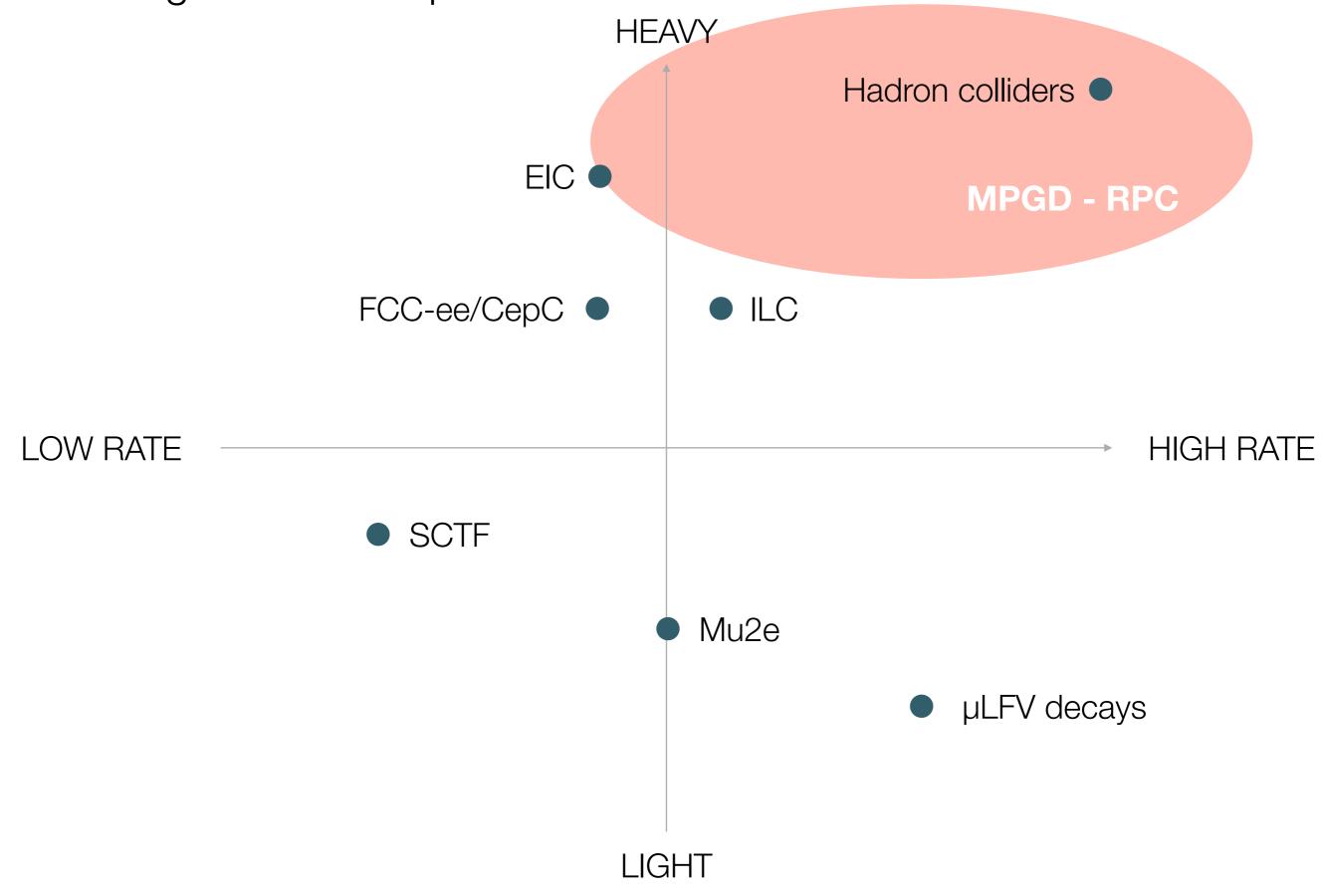
Particle ID/TOF

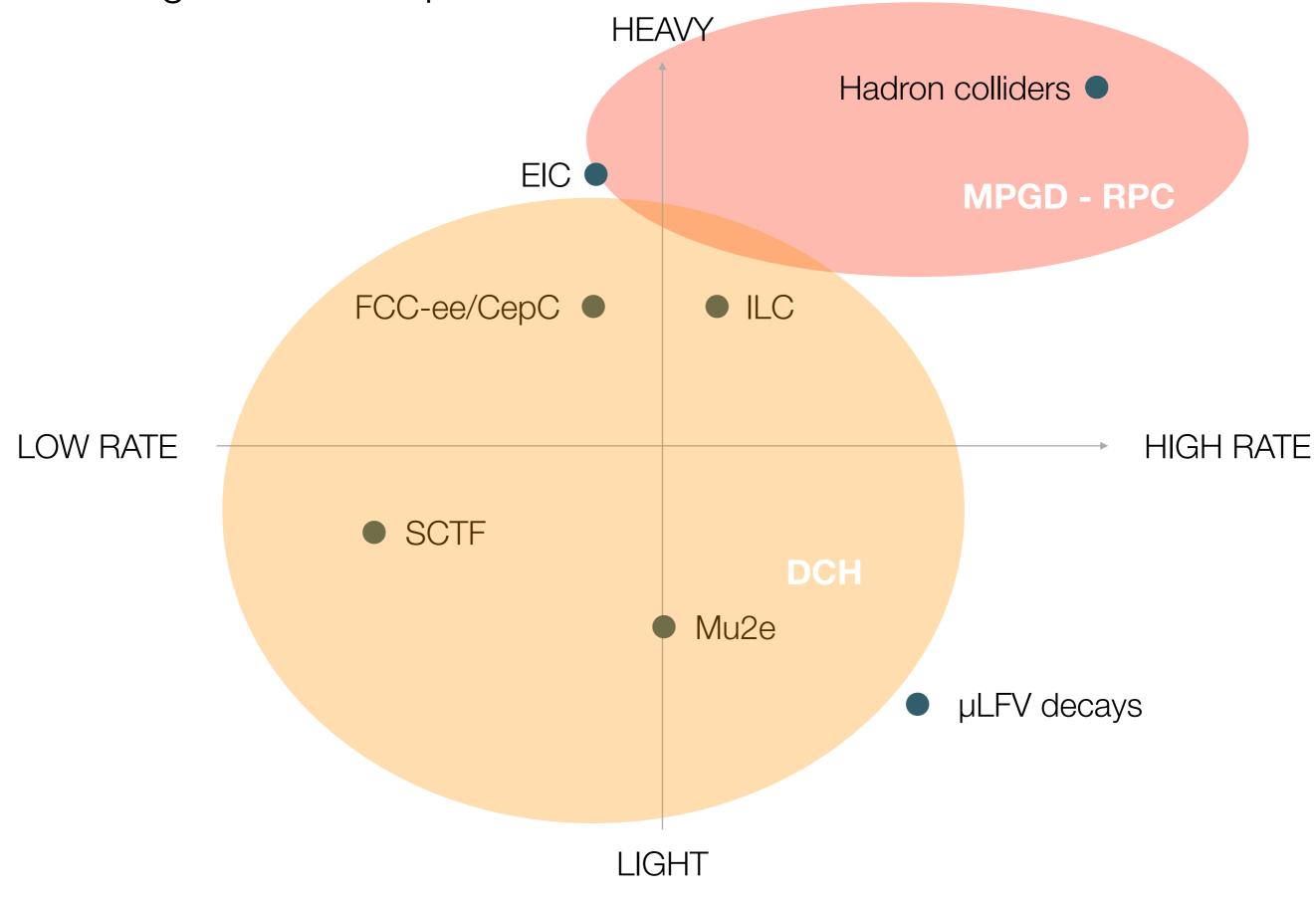
TPC for rare events

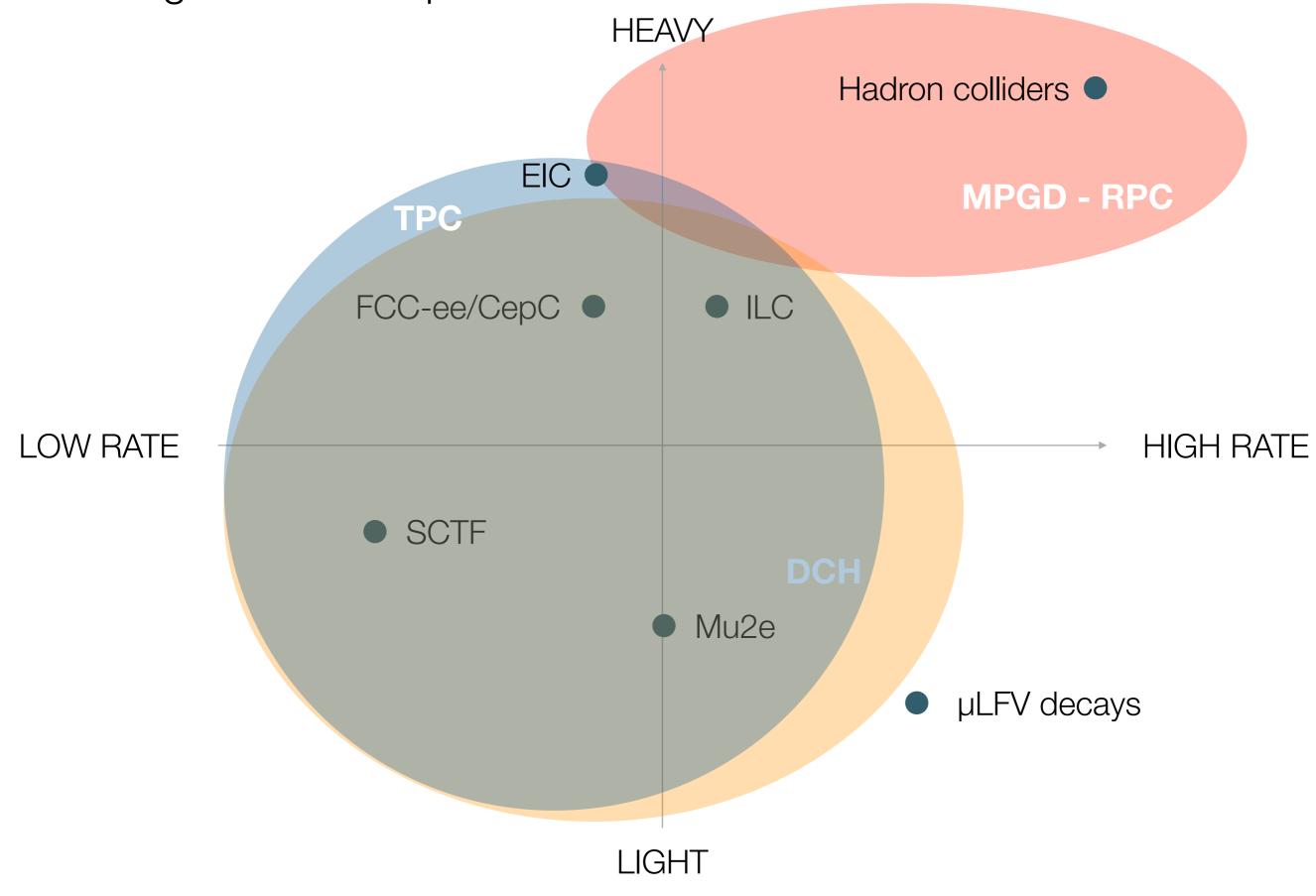
What: MPGD, DCH, TPC, Straw

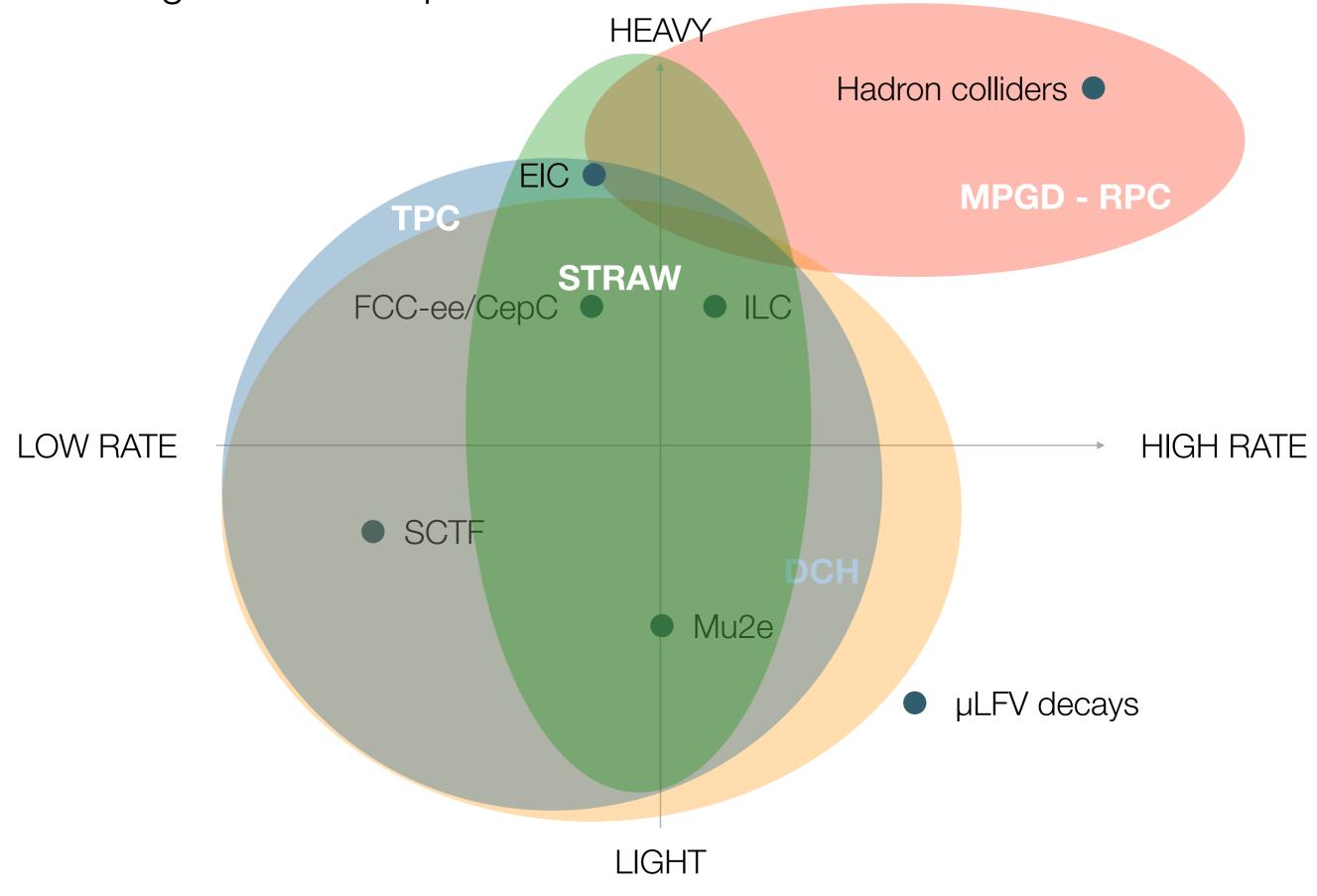
Why:


High-rate capability and excellent spatial resolution, minimal material budget and lightweight mechanics

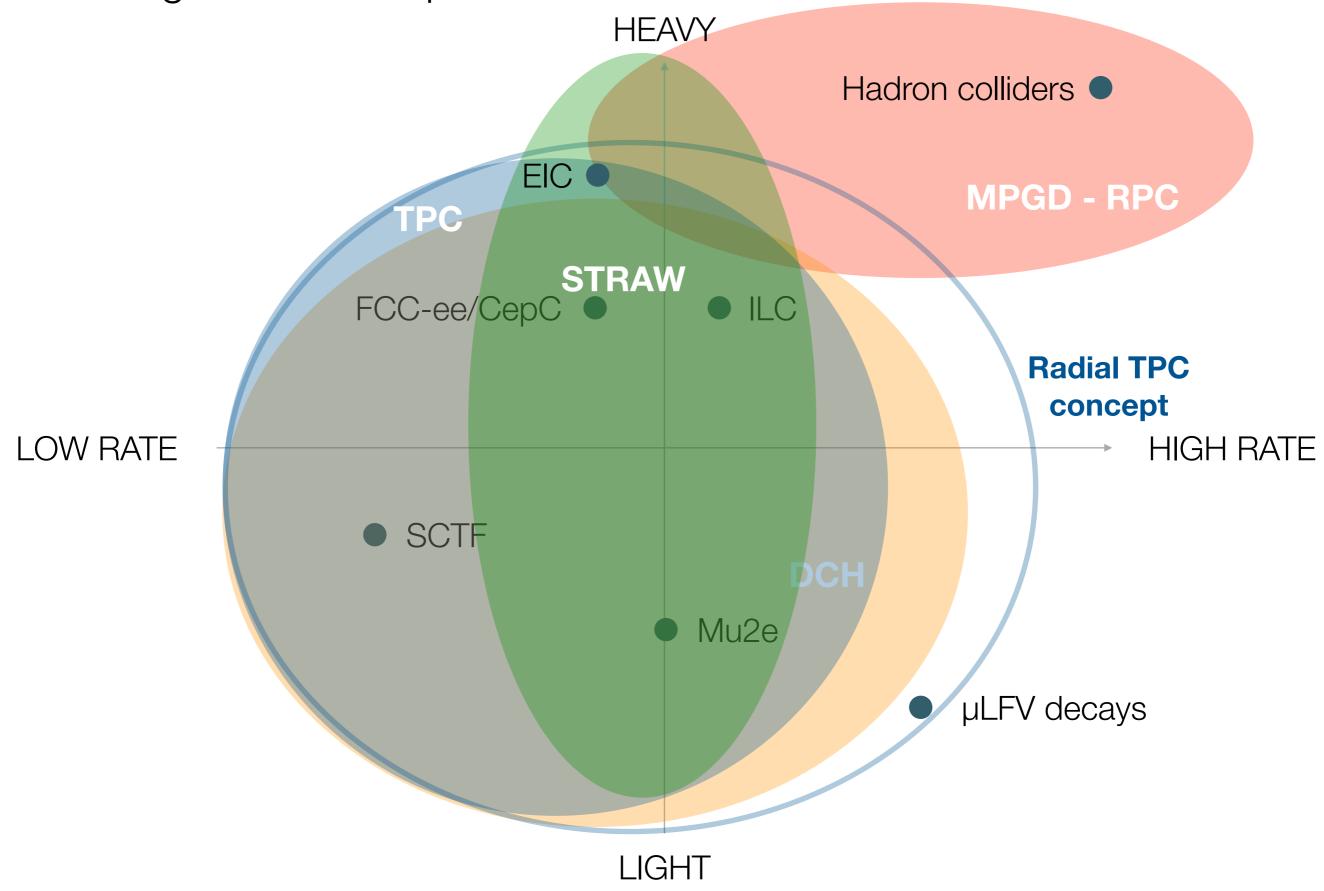

Challenges:


Improved resolutions Extremely low material budget High rate (radiation & occupancy)


Innovations:


Alternative materials (DCH, straws), geometries (DCH, TPC) and gas mixtures Readout with reduced ion back-flow (TPC)





Muon systems

Inner/central tracking with PID

Preshower/Calorimeters

Particle ID/TOF

TPC for rare events

What: MPGD, RPC

Why:

High granularity and good timing for particle-flow sampling calorimetry

Challenges:

Stable and uniform of the response over large areas Excellent timing Eco-friendly gas mixtures

Innovations: MRPC, PICOSEC and FTM for fast timing

Muon systems

Inner/central tracking with PID

Preshower/Calorimeters

Particle ID/TOF

TPC for rare events

What: MPGD, MRPC

Why:

Cost-effectiveness, very low material budget and minimal sensitivity to magnetic fields

Challenges:

Visible-photon converters (RICH, TRD) High gain (RICH, TRD) Excellent timing (TOF) Eco-friendly gas mixtures Rate capability

Innovations: MRPC, PICOSEC and FTM for fast timing

Muon systems

Inner/central tracking with PID

Preshower/Calorimeters

Particle ID/TOF

TPC for rare events

What: TPC

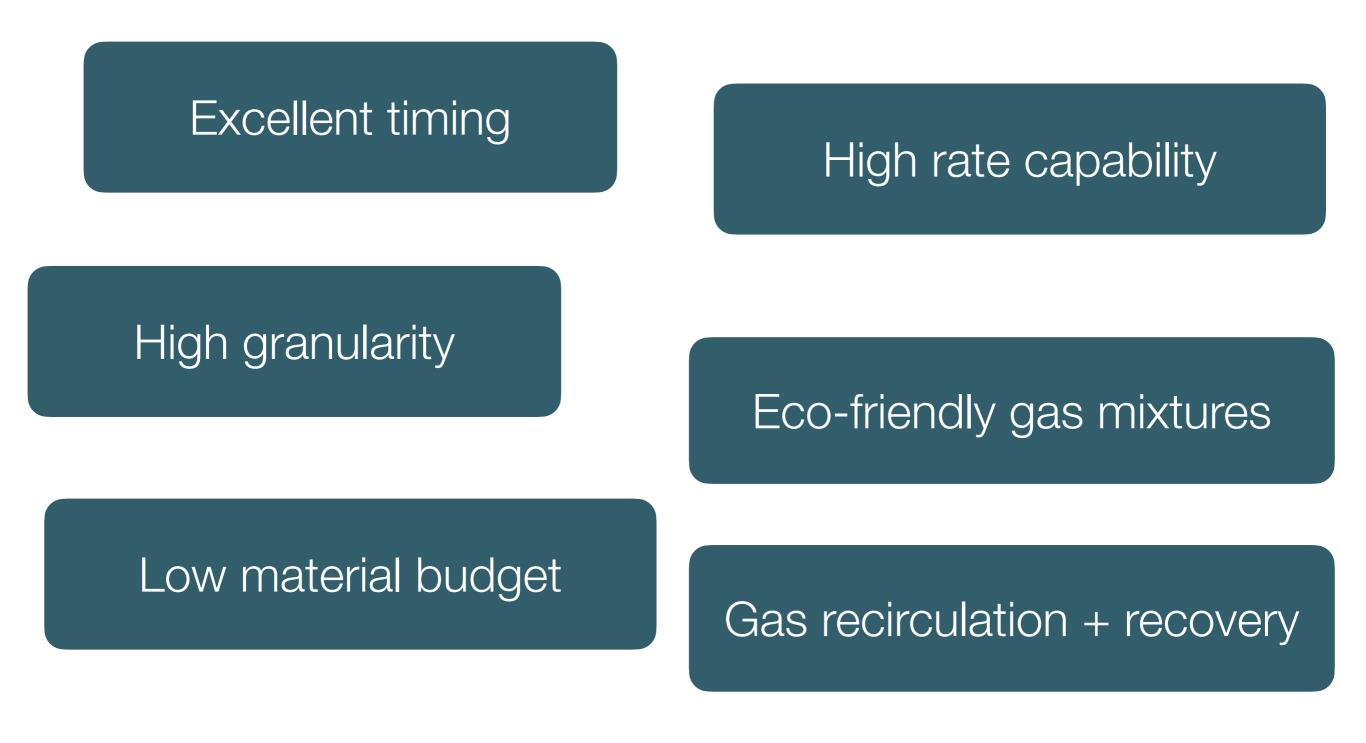
Why:

Full 3D reconstruction of the event and flexibility of choosing gas targets

Challenges:

High granularity over large volumes Very low noise electronics Radiopurity

Innovations:


Optical readout Electroluminescence Microbulk Micromegas Negative ions

An additional comment

- Gas procurement is becoming an issue
 - the **cost** of greenhouse gases (e.g. CF₄), being banned from industry, is becoming **prohibitive**
 - there is a **global shortage** even for the most common gases (Helium, CO₂), only partially related to the Ukrainian crisis
 - the situation could deteriorate further and quickly

Gas recirculation and recovery, beside being instrumental to the reduction of greenhouse gas emissions, could be also an asset to reduce operational issues and costs

(My personal) selection of keywords

Activities and expertise @ INFN Roma

Excellent timing

MEG, CYGNO

High granularity

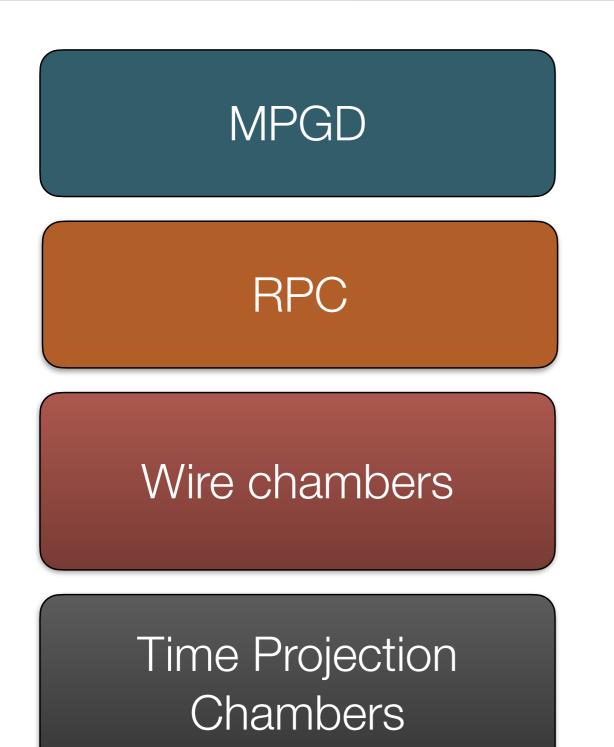
MEG, KLOE

Low material budget

ATLAS, JLAB12, LHCb

High rate capability

CYGNO


Eco-friendly gas mixtures

Gas recirculation + recovery

Infrastructures @ INFN Roma

- The refurbishing of Laboratori Segrè temporarily deprived us of unique spaces fully equipped for the development of gaseous detectors, with important investments made by INFN over the years:
 - certified installations for explosive and inert gases
 - gas mixing and distribution systems
 - gas analyzers
 - UV laser test facility
 - radioactive sources
 - HV, electronics, etc.
- Some activities continued in the JLAB12 lab @ ISS and with partial and temporary installations @ Dipartimento di Chimica
- A quick restoration of a fully equipped gaseous detector lab in the renewed Lab. Segrè is critical for the survival of this R&D line at INFN Roma
- Availability and classification of clean rooms to be also reviewed

Toward DRD1 — The community

The RD51 community will migrate almost rigidly into DRD1

A community-building effort is ongoing in the other sectors

Many interplays (TPC + MPGD, electronics, infrastructures...)

Large Volume Detectors

Toward DRD1 — The DRD1 Proposal Team

MPGD

E. Olivieri (CERN), F. Tessarotto (INFN Trieste), M. Titov (CEA Paris/Saclay)

RPC

I. Deppner (U. Heidelberg), G. Iasselli (Politecnico & INFN Bari), B. Liberti (INFN Roma 2)

Wire chambers P. Wintz (IKP, FZ Jülich)

Time Projection Chambers E. Ferrer Ribas (IRFU/CEA), J. Kaminski (U. Bonn)

ECFA TF1 Conveeners:

A. Colaleo (U. & INFN Bari), L. Ropelewski (CERN), J. Veloso (U. Aveiro)

ECFA Coordinators Group Member:

Silvia Dalla Torre (INFN Trieste)

Infrastructure, detector R&D programs:

Roberto Guida (CERN), Beatrice Mandelli (CERN)

Administrative support:

Hans Taureg (U. Bonn), Florian Brunbauer (CERN)

Large Volume Detectors M. Panareo (U. & INFN Lecce), F. Renga (INFN Roma)

Toward DRD1 — On going activities

- A global survey of interested groups was performed in Nov.-Dec. 2022
 - active connection to known groups/collaborations/experts
 - call for expressions of interest
- A discussion about the collaboration structure started within the proposal team
- A survey of resources and ongoing/foreseen activities by the interested groups will be performed in the next weeks

Toward DRD1 — 1st DRD1 Community Workshop

CERN, 1-3 March 2023

(What to write in the collaboration proposal? How to organize the collaboration? What is the financing scheme? ...)

Backup

Muon systems

Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	resistive-GEM, Micromegas, micro-pixel Micromegas, u-RWELL, u-PIC	resolution, miniaturisation of	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)		Stability, low cost, space resolution, large area, eco-gases	(IDEA): Max. rate: 10 kHz/cm ² Spatial resolution: ~60-80 μm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²
Muon collider	Micromegas RPC MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm ² (θ <8 ⁰) < 2 kHz/cm ² (for θ >12 ⁰) Spatial resolution: ~100 μ m Time resolution: sub-ns Radiation hardness: < C/cm ²
Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	resolution, radiation hard, eco-gases,	(CBM@FAIR): Max rate: <500 kHz/cm ² Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹³ neq/cm ² /year
FCC-hh (100 TeV hadron collider)	GEM, THGEM, µ-KWELL,	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max. rate 500 Hz/cm ² Spatial resolution = 50 μ m Angular resolution = 70 μ rad (η =0) to get $\Delta p/p \le 10\%$ up to 20 TeV/c

Inner/Central Tracking

Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	MPGD	High spatial resolution, high rate/occupancy, radiation hardness, low mass	LHCb option: replace Scintillating Fibre tracker Spatial resolution:70 µm bending plane
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	TPC+(multi-GEM, Micromegas, GridPix), Drift Chambers, Cylindrical layers of MPGD	counting, TPC continuous mode at high rate, (IBF x Gain) ~1	Inner tracker (SCTF) Fluxes: $\geq 10 \text{ kHz cm}^2 \text{ s}^{-1}$ Time resolution: 1 ns X/X0 = 1% Spatial resolution: ~100 µm Central tracker (CepC) Max. rate: >100 kHz/cm ² Spatial resolution: ~100 µm Time resolution: ~100 ns dE/dx: <5% Particle separation with cluster counting at 2% level
Rare processes, atomic and nuclear physics (SPS Kaons: K ⁺ Phase, K- Phase, Mu2eII/COMET-II, ELENA)	TPC, straw tubes	High spatial resolution, occupancy, fast/precise timing, radiation hardness, low mass, Gd-deposited MPGD detectors	Max rate = 500 kHz/straw (Mu2e II): Thinner straw material: 8 μm X/X0 ~ 0.02% per layer, X/X0 ~ 1% total (COMET+): Diameter = 4.8 mm Trailing time resolution = 1 ns per track
Hadron and nuclear physics (EIC, AMBER, PANDA and CMB@FAIR, PRES MAINZ, NA60+	Micromegas, GEM, µ-RWELL, straw tubes	High spatial resolution, good timing, radiation hardness, tolerance to magnetic field	(EIC) Max rate = 100 kHz/cm ² Spatial resolution ~50 μ m X/X0 = 5% dE/dx=12%, continuos running

Calorimeters

Facility	Technologies	Challenges	Most challenging requirements at experiment
Higgs-EW-Top Factories (ee)	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM	High granularity, excellent hit	(ILC) Max. rate:1 kHz/cm ² Granularity (~1 cm ²) Radiation hardness: no Jet Energy resolution: 3-4 % Power-pulsing, self-triggering readout
	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM		Granularity (~1cm ²) Fat jet identification Time resolution= O(100ps) Energy resolution =(5%)/sqrt(E) for fat-jet High radiation hardness
Hadron physics (EIC)	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM	High granularity, radiation hardness, excellent hit timing, stabiliy, uniform response, eco-gases	(EIC option) DHCAL

Photon Detectors

Facility	Technologies	Challenges	Most challenging requirements at experiment
Hadron and nuclear physics (EIC, AMBER, PANDA and CMB@FAIR)	Gaseous-RICH with MPGD-based photon detector TRD with GEM or GridPix	 RICH: Compact, single photon detection, high gain, fine spatial and time resolution, eco-friendly gas radiator, high pressure; limited IBF, novel photoconverters TRD: cluster counting technique, heavy gas for X-ray absorption, TRD photon -dE/dx separation. 	(EIC-gaseous RICH) 1 meter of radiator gas High-gain: $10^5 - 10^6$ Spatial resolution: O(1mm pitch) Time resolution (even with small signals) $\leq 1n$ Tolerance to magnetic field (1.5 - 3 T) Rad-hardness up to 10^{11} neq/cm ² option: High Pressure-Rich: Ar @ 3.5 bar (EIC-TRD) compactness 10^{-2} rejection in 20-30 cm improved MIP/x-ray identification
Higgs-EW-Top Factories (ee) (FCC-ee/CepC)	Gaseous-RICH with MPGD-based photon detector	detection, high gain, fine spatial and	(Gaseous-RICH): High-gain: 10 ⁵ - 10 ⁶ Spatial resolution O(1mm pitch) Time resolution (even with small signals) ≤ 1ns

Particle ID

Facility	Technologies	Challenges	Most challenging requirements at experiment
(CMB(a)FAIR SOLID(a)II.AB		Rate capability, radiation hardness, large area detectors, new material, eco-gas, thinner structures, FEE, system time distribution	(CMB) Max Rate = 30 kHz/cm ² Full system time resolution < 80 ps Occupancy < 5% Full system area = 120 m ² ~100.000 channels, low power electronics

TPC for rare events

Facility	Technologies	Challenges	Most challenging requirements at experiment
WIMP search (DRIFT, MIMAC, CYGNUS, MIGDAL, TREX-DM)	-TPC w/ MWPC/MPGD at 20-130 mbar, charge readout -TPC w/ MPGD at 66 mb/1 bar, charge and optical readout -TPC w/ MPGD at 1-10 bar, charge readout	High granularity, high gain, low background, very low noise level and fast electronics, self trigger capability, gas optimization	(CYGNUS) Gain = $O(10^6)$ Spatial resolution = $O(100 \ \mu m)$ Energy Threshold = 2 keVee Energy Resolution = 20% at 5.9 keVee Optical readout He:SF ₆ or He:CF ₄ at P = 1 bar
Solar axion helioscope (IAXO)	-TPC w/ pixelated Micromegas, GridPix, charge readout	High granularity, low background, radiopure electronics, self-trigger capability	High efficiency in ROI (0-10 keV) Spat. res = $O(100 \ \mu m)$ Background: $10^{-7} \ c/keV/cm2 \ /s$ Xe at P = 1 bar B = 6 T
Low energy nuclear physics general purpose active target (AT-TPC, ACTAR)	-TPC+MM at 0.05- 3 bar, charge readout	Electronics with large dynamic range and flexible configuration. self-trigger capability, high pressure MPGD	(AT-TPC) B = 2 T P = 0.05-1 bar 3D-layout Generic target gases (H2, He, Ar, CO2)
Neutrino physics and Neutrino-less double beta decay (DUNE-ND, NEXT, PANDAX-II)	-TPC+SiPM+PM: electroluminescence readout, -TPC+MM: charge readout	low background, energy resolution and topological rejection factors, scale to large volume, transparency and long drifting distance, high pressure, Ba++ tagging	(NEXT) P = 5-15 bar 3D-reconstruction of tracks through SiPM plane Energy resolution < 1% Ba++tagging
Neutrinos and DM search (Dune, DarkSide-20k, Argo, PandaX-4T, LZ, ARIADNE, Darwin)	- Dual-Phase TPC+MPGD	Large volume (uniform and stability response), ultra-low background, energy resolution, low energy thresholds, high granularity, charge extraction from liquid to gas, background rejection by prompt scintillation light -S1/ signal from the charge -S2 optimisation; Xenon and Argon storage and recuperation techniques	(Darwin) 200 t x yr exposure Drift/diameter: 2.6 m / 2.6 m LXe Mass: 40 t Particle discrimination by S1/S2 Low-energy threshold of ~1 keVnr Robust electrode design (up to 50kV) Ultra-low intrinsic radioactivity materials 222Rn: factor 100 reduction (a,n) neutrons (from PTFE) >99.98% Electron Recoil rejection at 30% Nuclear Recoil efficiency High light yield (QE) ~ 8 PE/keV (Darkside-20k /Argo) 200 t x yr exposure /Argo = 3000 t x yr) Drift/diameter: 3.5 m / 3.5 m LAr Mass: 51.7 t /Argo - 350 t Particle discrimination by S1/S2 and pulse shape. Low-energy threshold of ~0.5 keVnr Highlander scintillation yield ~40 PE/KeV Membrane cryostat like the ProtoDune Low radioactivity argon in underground CO2 wells (UAr) with an activity 1400 times lower than atmospheric