

## LAILINGO

### Matthieu Schaller

Lorentz Institute & Leiden Observatory

Temperature

**Dark Matter** 

Metallicity

## Cosmological simulations for theory



t = 380'000 years  $\Box \rho / \rho \approx 10^{-5}$ 

ACDM? ? Dark energy? Modified gravity? MOND? Warm dark matter? Self-interacting dark matter? Axion dark matter? Massive neutrinos? Variable speed of light? Non-standard inflation?



t = 13'800'000'000 years  $\Box \rho / \rho >> 10^{6}$ 



#### Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

Matthieu Schaller <sup>© 1,2</sup>\*, Josh Borrow <sup>© 3,4</sup>, Peter W. Draper <sup>© 4</sup>, Mladen Ivkovic <sup>© 5,6,7</sup>, Stuart McAlpine <sup>© 8,9</sup>, Bert Vandenbroucke <sup>© 2,10</sup>, Yannick Bahé <sup>© 4,2,5</sup>, Evgenii Chaikin <sup>© 2</sup>, Aidan B. G. Chalk <sup>11</sup>, Tsang Keung Chan <sup>© 12,4</sup>, Camila Correa <sup>© 13</sup>, Marcel van Daalen <sup>© 2</sup>, Willem Elbers <sup>© 4</sup>, Pedro Gonnet <sup>© 14</sup>, Loïc Hausammann <sup>© 5,15</sup>, John Helly <sup>© 4</sup>, Filip Huško <sup>© 4</sup>, Jacob A. Kegerreis <sup>© 16,4</sup>, Folkert S. J. Nobels <sup>© 2</sup>, Sylvia Ploeckinger <sup>© 1,17</sup>, Yves Revaz <sup>© 5</sup>, William J. Roper <sup>© 18</sup>, Sergio Ruiz-Bonilla <sup>© 4</sup>, Thomas D. Sandnes <sup>© 4</sup>, Yolan Uyttenhove <sup>© 10</sup>, James S. Willis <sup>19</sup>, and Zhen Xiang <sup>© 1,20</sup>

arXiv:2305.13380

www.swiftsim.com

### Features

- Short-range gravity using FMM.
- Long-range (periodic) gravity via PM.
- Multiple flavours of SPH & other hydro.
- Default SPH model designed for cosmological applications. (Borrow+21)
- Coupled to VELOCIraptor 6DFOF structure finder. (Elahi+19)
- On-the-fly lightcones and power spectra.
- All open source. Very scalable.

- Particle-based neutrinos using "delta-f" method. (Elbers+21)
- SIDM implementation. (Correa+21)
- Moment-based RT on top of SPH. (Chan+21)
- EAGLE-like subgrid model.
- GEAR subgrid model. (Revaz 2019)
- AGN jet model. (Husko & Lacey 22)
- >150 test problems and examples.

# FLAMINGO motivation

# Euclid: Measuring the late-time Univers



Euclid satellite mission statement:

"Constrain the nature of dark matter by measuring halo sub-structures"

"Achieve 1% accuracy on the key dark energy model parameters"

"Constrain the sum of neutrino masses and structure of the mass hierarchy"

# Surveys in a nutshell







=

Perturbation theory, Semi-analytic, Simulations, Emulators, ...

#### EAGLE: Evolution and Assembly of GaLaxies and their Environments

The evolution of intergalactic gas. Colour encodes temperature

z = 3.0 t = 1.6 Gyr L = 25.0 cMpc

United to the State State Street

## Baryon effects on the matter field



## The DES solution?



#### DES collab. 2021

#### Effect on total matter power-spectrum



# Relevant data?



van Daalen+20

# The Plan

- 1. Measure  $f_{\text{bar}}(R_{500})$  in groups. \_\_\_\_\_\_ eRosita very timely here!
- 2. Design a network of subgrid models that matches this.
- 3. Run **large simulations** varying cosmology.
- 4. Build an emulator for cosmology inference.
- 5. Infer cosmological parameters from the data using the emulator.

# FLAMINGO project

FLAMINGO: Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations

Successor to the BAHAMAS project

Designed to be a "virtual twin" to late-time cosmology probes (Euclid, SZ, eROSITA, ...)



Leiden, Liverpool & Durham collaboration

Braspenning, Elbers, Frenk, Helly, Kugel, Kwan, McCarthy, Salcido, Schaller, Schaye, van Daalen, Vandenbroucke

arXiv:2306.04024



# FLAMINGO basics

- Series of boxes and resolution from 1 Gpc to 5.6 Gpc and 10<sup>8</sup> to 10<sup>10</sup> M<sub>o</sub> resolution.
- SWIFT solver with PM+4th order FMM, SPHENIX SPH, particle-based neutrinos, and ML-calibrated subgrid models.
- Flagship run: 2.8 Gpc with 5040<sup>3</sup> gas, 5040<sup>3</sup> DM, and 2800<sup>3</sup>  $\nu$  particles.
- Cosmological parameters are "DES 3x2pt + all external"(flat,  $\Omega_m = 0.306$ ,  $\Omega_b = 0.0486$ , h=0.681,  $\Sigma m_v = 0.06 \text{ eV}$ ,  $\sigma_8 = 0.804$ , n<sub>s</sub>=0.967)

# FLAMINGO runs



# Key ingredients

Core components:

- SWIFT cosmo hydro solver
- **SPHENIX SPH** (Borrow+22)
- Massive neutrinos (Elbers+21)
- Multi-fluid ICs monofonIC code (Hahn+21)
- Many full-sky light-cones

#### Subgid physics:

- Radiative cooling (Ploeckinger+20)
- Star formation (Schaye+08)
- Enrichment (Wiersma+09)
- SF feedback (Chaikin+22)
- AGN feedback (Booth+09, Bahe+22)

#### $\rightarrow$ Calibration via Gaussian process emulator

#### Calibration of the model



# Calibration of the model



#### Kugel+23

# Model variations



Kugel+23



500 10

2000100

4000100

FLAMINGO: 2.78 x 10<sup>11</sup> particles. DES 3x2pt cosmo. 2.8<sup>3</sup> Gpc<sup>3</sup> volume.

# Neutrino clustering



#### Cluster gas properties



## Halo mass function



#### Halo mass function comparison



#### Halo mass function with baryons



#### Total matter power spectrum













#### Baryon suppression vs. nu's



# FLAMINGO - 2<sup>nd</sup> phase: Bracket the real Universe

Cosmology variations Latin hypercube:

- $0.2 < \Omega_{\rm m} < 0.4$
- $0.14 < \Omega_{b} / \Omega_{m} < 0.17$
- 0.6 < h < 0.8
- <u>001< n<10</u>

#### + SIDM

- $-1.3 < w_0 < -0.7$
- $\sim -0.7 < w_a < 0.7$
- $0 < \Omega_{v} h^{2} < 0.005$
- "Feedback intensity"

# For each, produce all-sky maps matching different probes:



# Also X-ray, SZ, weak-lensing, CMB lensing, correlation functions, RSD, ...

