Testing SIDM with galaxy warps

Harry Desmond

w/ Kris Pardo and Pedro Ferreira

arXiv:1911.04497

29 June 2023

Pollica SIDM

Overview

- Effects of SIDM on galaxy morphology
- Modelling disk warping
- Measuring disk warping
- Constraining the cross-section
- Caveats and future prospects

Drag force affects galaxy shapes

Drag force affects galaxy shapes

Secco+ 2018

Warping of stellar disks

Warping of stellar disks

In clusters: SIDM generically causes drag *In the field:* long-range interactions only

Drag formalism

- Particle of mass $m_{_{DM}}$ moves through medium of density $\rho_{_{bg}}$ under a long-range self-interaction

$$dN = \frac{\rho_{\rm bg}}{m_{\rm DM}} \frac{d\sigma}{d\Omega} v \ dt \ d\Omega \qquad \vec{a}_{\rm drag} = \frac{\vec{F}_{\rm drag}}{m_{\rm DM}} = \frac{\rho_{\rm bg}}{m_{\rm DM}} v^2 \int \frac{d\sigma}{d\Omega} (\cos \theta - 1) \ d\Omega \ \hat{v} \qquad \frac{d\sigma}{d\Omega} = \frac{\alpha_{\rm DM}^2}{m_{\rm DM}^2 v^4 \sin^4 \theta}$$
$$\tilde{\sigma} \equiv -16\pi \ \alpha_{\rm DM}^2 / m_{\rm DM}^2 \qquad \vec{a}_{\rm drag} = -\frac{1}{4} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} \frac{c^4}{v^2} \ \hat{v} \qquad \qquad \frac{Dispersion\ correction}}{\chi_p = \frac{v^3}{v^3 + v_{\rm disp}^3}}$$

Kummer+ 2018

Drag formalism

- Particle of mass $m_{_{DM}}$ moves through medium of density $\rho_{_{bg}}$ under a long-range self-interaction

$$dN = \frac{\rho_{\rm bg}}{m_{\rm DM}} \frac{d\sigma}{d\Omega} v \ dt \ d\Omega \qquad \vec{a}_{\rm drag} = \frac{\vec{F}_{\rm drag}}{m_{\rm DM}} = \frac{\rho_{\rm bg}}{m_{\rm DM}} v^2 \int \frac{d\sigma}{d\Omega} (\cos \theta - 1) \ d\Omega \ \hat{v} \qquad \frac{d\sigma}{d\Omega} = \frac{\alpha_{\rm DM}^2}{m_{\rm DM}^2 v^4 \sin^4 \theta}$$
$$\tilde{\sigma} \equiv -16\pi \ \alpha_{\rm DM}^2 / m_{\rm DM}^2 \qquad \vec{a}_{\rm drag} = -\frac{1}{4} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} \frac{c^4}{v^2} \ \hat{v} \qquad \qquad \frac{Dispersion\ correction}{\chi_{\rm p}} = \frac{v^3}{v^3 + v_{\rm disp}^3}$$
$$Kummer + 2018$$

Under instead a finite-range interaction

$$contact \quad \vec{a}_{drag}^{contact} = -\frac{1}{4} \chi_d \chi_p \left(\frac{\tilde{\sigma}_{\rm DM}}{m_{\rm DM}}\right) \rho_{\rm bg} v^2 \ \hat{v} \qquad \chi_d = 1 - 4 \int_{\sqrt{x^2/(1+x^2)}}^{1} dy \ \frac{v^2 \sqrt{y^2 - x^2(1-y^2)}}{y^2 \sqrt{y^2 - x^2(1-y^2)}} \qquad x \equiv v_{\rm esc}/v$$

$$Markevitch + 2004$$

$$k \equiv v_{\rm esc}/v$$

$$Markevitch + 2004$$

$$m=0: \text{ Contact}$$

$$m=4: \text{ Long-range}$$

Calculating the warp

• Warp curve as a function of drag force

$$\vec{a}_{\rm h} = \vec{a}_{\rm bg} - \vec{a}_{\rm drag} \qquad \vec{a}_{\star} = \vec{a}_{\rm bg} - \frac{GM_{\rm h}}{r_{\star}^2}\hat{r}$$
$$\vec{a}_{\rm drag} = \frac{GM_{\rm h}}{r_{\star}^2}\hat{z}\cos\theta = \frac{GM_{\rm h}}{r_{\star}^2}\hat{z}\left(\frac{z}{x}\right) \qquad r_* \approx x$$
$$\rho(r) = \rho_s \left(\frac{r_s}{r}\right)^n \qquad z = a_{\rm drag}\frac{3-n}{4\pi\rho_s}|x|^n$$

Calculating the warp

• Warp curve as a function of drag force

$$\vec{a}_{\rm h} = \vec{a}_{\rm bg} - \vec{a}_{\rm drag} \qquad \vec{a}_{\star} = \vec{a}_{\rm bg} - \frac{GM_{\rm h}}{r_{\star}^2}\hat{r}$$
$$\vec{a}_{\rm drag} = \frac{GM_{\rm h}}{r_{\star}^2}\hat{z}\cos\theta = \frac{GM_{\rm h}}{r_{\star}^2}\hat{z}\left(\frac{z}{x}\right) \qquad r_{\star} \approx x$$
$$\rho(r) = \rho_s \left(\frac{r_s}{r}\right)^n \qquad z = a_{\rm drag}\frac{3-n}{4\pi\rho_s}|x|^n$$

• Summarising the warp strength

$$w_{1} = \frac{1}{L^{3}} \int_{-L}^{L} (z - \langle z \rangle) |x| dx \qquad \qquad w_{1} = \frac{n(3-n)}{(n+1)(n+2)} \frac{a_{\text{drag}}}{4\pi G\rho_{s}} \left(\frac{L}{r_{s}}\right)^{n} \frac{1}{L}$$
$$L = 3R_{\text{eff}}$$

Observational sample

3,213 galaxies from SDSS with b/a<0.15, M_*>10 9 M_{sun} and D<250 Mpc

J115012.10+065956.9

J003938.31+143951.2

Observational sample

3,213 galaxies from SDSS with b/a<0.15, M_{*}>109 M_{sun} and D<250 Mpc

$$\vec{a}_{\rm drag}^{\rm inter} = -\frac{1}{4} \chi_d^{\rm inter} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} v^2 \left(\frac{c}{v}\right)^m \qquad \qquad w_1 = \frac{n(3-n)}{(n+1)(n+2)} \frac{a_{\rm drag}}{4\pi G \rho_s} \left(\frac{3R_{\rm eff}}{r_s}\right)^n \frac{1}{3R_{\rm eff}}$$

$$\vec{a}_{\rm drag}^{\rm inter} = -\frac{1}{4} \chi_d^{\rm inter} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} v^2 \left(\frac{c}{v}\right)^m \qquad \qquad w_1 = \frac{n(3-n)}{(n+1)(n+2)} \frac{a_{\rm drag}}{4\pi G \rho_s} \left(\frac{3R_{\rm eff}}{r_s}\right)^n \frac{1}{3R_{\rm eff}}$$

- Estimate halo parameters (r_s , ρ_s , v_{disp}) using inverse sub-halo abundance matching
- *n* given uniform prior between 0.5 and 2

$$\vec{a}_{\rm drag}^{\rm inter} = -\frac{1}{4} \chi_d^{\rm inter} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} v^2 \left(\frac{c}{v}\right)^m \qquad \qquad w_1 = \frac{n(3-n)}{(n+1)(n+2)} \frac{a_{\rm drag}}{4\pi G \rho_s} \left(\frac{3R_{\rm eff}}{r_s}\right)^n \frac{1}{3R_{\rm eff}}$$

- Estimate halo parameters (r_s , ρ_s , v_{disp}) using inverse sub-halo abundance matching
- *n* given uniform prior between 0.5 and 2
- ρ_{bg} estimated using Bayesian Origin Reconstruction from Galaxies (BORG) algorithm

$$\vec{a}_{\rm drag}^{\rm inter} = -\frac{1}{4} \chi_d^{\rm inter} \chi_p \left(\frac{\tilde{\sigma}}{m_{\rm DM}}\right) \rho_{\rm bg} v^2 \left(\frac{c}{v}\right)^m \qquad \qquad w_1 = \frac{n(3-n)}{(n+1)(n+2)} \frac{a_{\rm drag}}{4\pi G \rho_s} \left(\frac{3R_{\rm eff}}{r_s}\right)^n \frac{1}{3R_{\rm eff}}$$

- Estimate halo parameters (r_s , ρ_s , v_{disp}) using inverse sub-halo abundance matching
- *n* given uniform prior between 0.5 and 2
- ρ_{ba} estimated using Bayesian Origin Reconstruction from Galaxies (BORG) algorithm
- Velocity of ambient DM medium from linear perturbation theory applied to ρ_{bg}
- Galaxy peculiar velocities either a constant or that of the nearest galaxy in the CosmicFlows-3 catalogue
- Project onto plane of sky and disk normal assuming infall towards nearest 2M++ galaxy

Likelihood model

- Generate w1 likelihood by Monte Carlosampling the parameters from their priors (simulation based / implicit likelihood inference)
- Create continuous likelihood function by fitting a Gaussian mixture model
- Introduce extra astrophysical noise term σ_{w1} to capture non-SIDM contributions to warp, and marginalise over it

Results I. Long-range interactions

Results II. Forecast for contact interactions

Results

III. Forecast for intermediate-range interactions

- Assume warps of fixed magnitude in equilibrium, but may not be stable
- Halos assumed to be rigid and not distorted by the self-interactions
 - Need simulations of warps in field galaxies

- Assume warps of fixed magnitude in equilibrium, but may not be stable
- Halos assumed to be rigid and not distorted by the self-interactions
 - Need simulations of warps in field galaxies
- Fluid approximation restricts us to long-range interactions
 - Sample disks in clusters with short interaction timescales and multi-streaming

- Assume warps of fixed magnitude in equilibrium, but may not be stable
- Halos assumed to be rigid and not distorted by the self-interactions
 - Need simulations of warps in field galaxies
- Fluid approximation restricts us to long-range interactions
 - Sample disks in clusters with short interaction timescales and multi-streaming
- Noise assumed Gaussian and uncorrelated with anything else
- Baryonic and tidal effects neglected
 - Ram pressure goes in same direction as SIDM \rightarrow results conservative

- Highly uncertain peculiar velocities, especially their directions
 - Expanding scope and precision of vpec modelling, e.g. CosmicFlows-4

- Highly uncertain peculiar velocities, especially their directions
 - Expanding scope and precision of vpec modelling, e.g. CosmicFlows-4
- Assumptions on density profile of halos, and galaxy-halo connection
- ACDM built into calculation of ρ_{bg} , r_s , ρ_s , v_{disp}
 - Need SIDM sims

Conclusion

- Classic SIDM drag effect potentially best detected through galaxy morphology
- Warping is readily measurable in galaxy images, yielding potentially strong constraints on long-range self-interactions
- Can pick out small signals statistically from large samples with very low S/N per object using Bayesian forward modelling
- A method with promise for the future...

Extra Slides

Momentum transfer cross-section

$$\sigma_T = 4\pi \int_0^1 \frac{d\sigma}{d\Omega} (1 - \cos\theta) \ d(\cos\theta) \qquad \frac{d\sigma}{d\Omega} = \frac{\alpha_{\rm DM}^2}{m_{\rm DM}^2 v^4 \sin^4\theta} \qquad \theta_{\rm min} = \frac{4\alpha_{\rm DM}}{\lambda_{\rm De} m_{\rm DM} v^2}$$

$$\vec{a}_{\rm drag} = -\frac{\sigma_T(v)}{2m_{\rm DM}} \rho_{\rm bg} v^2 \ \hat{v} \qquad \qquad \sigma_T(v) = \frac{16\pi\alpha_{\rm DM}^2}{m_{\rm DM}^2} \frac{1}{v^4} \left[1 - 2\log\left(\frac{8\sqrt{\pi\alpha^3\rho}}{m_{\rm DM}^2 v^3}\right) \right]$$

$$\sigma_T(v) = \sigma_T(v_0) \left(\frac{v_0}{v}\right)^4 \frac{1 - 2\log\Lambda(v)}{1 - 2\log\Lambda(v_0)} \qquad \vec{a}_{\rm drag} = -\frac{\sigma_T(v_0)}{2m_{\rm DM}} \rho_{\rm bg} v^2 \left(\frac{v_0}{v}\right)^4 \frac{1 - 2\log\Lambda(v)}{1 - 2\log\Lambda(v_0)} \hat{v}$$

$$\vec{a}_{\rm drag} = -\frac{\sigma_T}{2m_{\rm DM}}\rho_{\rm bg}v^2 \ \hat{v} \qquad \qquad \vec{a}_{\rm drag} = -\frac{\sigma_T(v_0)}{2m_{\rm DM}}\rho_{\rm bg}v^2 \left(\frac{v_0}{v}\right)^m \ \hat{v}$$

Inferring the initial phases

www.aquila-consortium.org

Data science meets the Universe

The Aquila consortium for Bayesian Large-Scale Structure inference

The 2M++ BORG reconstruction

z=0 mean

 Data from the 2M++ galaxy compilation (~70k galaxies, full sky, r≲200 Mpc, K<12.5)

Jasche & Lavaux (2019)

 Inference done with 256^3 voxels in (677.7 Mpc/h)^3 volume → ~10^7 constraints at 2.65 Mpc/h resolution

Parameter	Source of Uncertainty	Model Used
P(n)	Inner DM halo density slope	Uniform prior $n \in [0.5, 1.5]$
$P(\rho_s, r_s \mid M_r; \alpha, \sigma_{AM})$	Stochasticity in galaxy–halo connection	200 mock AM catalogs at fixed α and σ_{AM}
$P(ho_{ m bg} ec{x})$	Background DM density	10 draws from BORG posterior
P(v)	Galaxy relative velocity	Delta function at set velocity (see Sec. III B)
$P(\theta)$	Unknown relative velocity direction	Delta function at set angle (see Sec. $IIIB$)

Assumed Velocity	Evaporation?	Dispersion?	68% Upper Limit	95% Upper Limit
			cm^2/g	cm^2/g
$v = 300 \mathrm{km/s}$	N/A	-	2.0×10^{-13}	4.4×10^{-13}
	N/A	\checkmark	2.7×10^{-13}	6.1×10^{-13}
$v = v_{\rm CF3}$	N/A	-	4.7×10^{-14}	1.2×10^{-13}
	N/A	\checkmark	3.9×10^{-13}	9.4×10^{-13}

Assumed Velocity	Evaporation?	Dispersion?	68% Upper Limit	95% Upper Limit
			cm^2/g	cm^2/g
v = 300 km/s	N/A	-	0.10	0.21
	N/A	\checkmark	0.13	0.29
$v = v_{\rm CF3}$	N/A	-	0.03	0.07
	N/A	\checkmark	0.21	0.51

