

Collapse Timescales in Isolated Dwarfs

Maya Silverman

Self-Interacting Dark Matter: Models, Simulations and Signals

Milky Way-like N-Body Simulation with SIDM

Dark Matter + Baryonic Disk and Bulge

 $M_{\rm vir} = 10^{12} M_{\odot}$

 $m_{\rm DM} = 3 \times 10^4 M_{\odot}$

 $M_* = 4.1 \times 10^{10} M_{\odot}$

 $\sigma/m = 1 \text{ cm}^2/\text{g}$

 $\sigma/m = 5 \text{ cm}^2/\text{g}$

Proposed to solve diversity problem

Subhalo Circular Velocity Profiles vs dSphs

Maya Silverman

Core Collapse Timescale

simulated subhalos O isothermal model $\sigma/m = 1 \text{ cm}^2/\text{g}$ $\sigma/m = 5 \text{ cm}^2/\text{g}$

 10^{1}

 $\left<
ho_c \right> /
ho_s$

 $\widetilde{\mathcal{O}}$

 10^{0}

Silverman et. al. (2022)

Conclusion: Moderate σ

- Need core collapse for SIDM to match observations
- No core collapse in simulation with $\sigma/m = 5 \text{ cm}^2/\text{g}$
- Next:
 - (Much) larger σ/m for low velocity scales (~10 km/s)
 - Velocity dependence
 - Baryonic feedback

6

N-Body Simulations with SIDM: isolated dwarfs <

Dark Matter Only

$M_{\rm vir} = 10^{10} M_{\odot}$ $m_{\rm DM} = 1.5 \times 10^3 M_{\odot}$ $\sigma/m = 0, 5, 30, 70, 200 \text{ cm}^2/\text{g}$

c = 18.3

Using FIRE Initial Conditions Hydro FIRE2 coming soon!

CDM vs SIDM with 70 cm²/g

CDM

z = 99.0

CDM vs SIDM with 70 cm^2/g

CDM

Isolated Dwarf: m10q

Collapse timescale in m10q

Maya Silverman

$$t_{coll} = \frac{1}{c_1} \left(\frac{6-\alpha}{3\alpha-2}\right) - n(\alpha-2) \times t_{c0}$$
$$t_{c,0}^{-1} = \frac{2}{3\alpha C} \left(\frac{\sigma}{m_{DM}} v_0 \rho_0\right)$$
$$t_{coll} = 400 \times t_{c0}$$
$$t_{coll} \approx 23 \text{ Gyr}$$

Following Outmezguine et al. (2022) and Yang, Yu (2022)

Collapse timescale in m10q

$$t_{coll} = \frac{1}{c_1} \left(\frac{6-\alpha}{3\alpha-2}\right) - n(\alpha-2) \times t_{c0}$$
$$t_{c,0}^{-1} = \frac{2}{3aC} \left(\frac{\sigma}{m_{DM}} v_0 \rho_0\right)$$
$$t_{coll} = 400 \times t_{c0}$$

 $t_{coll} \approx 23 \text{ Gyr}$

Following Outmezguine et al. (2022) and Yang, Yu (2022)

N-Body Simulations with SIDM: m10v

Dark Matter Only

 $M_{\rm vir} = 10^{10} M_{\odot}$

 $m_{\rm DM} = 1.5 \times 10^3 M_{\odot}$

 $\sigma/m = 200 \text{ cm}^2/\text{g}$

c = 10.4

Using FIRE Initial Conditions

Isolated Dwarf: m10v

Low concentration: 10.4

Collapse timescale in m10q

$$t_{coll} = \frac{1}{c_1} \left(\frac{6 - \alpha}{3\alpha - 2} \right) - n(\alpha - 2) \times t_{c0}$$
$$t_{c,0} = \frac{2}{3aC} \left(\frac{\sigma}{m_{DM}} v_0 \rho_0 \right)$$
$$t_{coll} = 400 \times t_{c0}$$

$t_{coll} \approx 85 \text{ Gyr}$

Following Outmezguine et al. (2022) and Yang, Yu (2022)

Conclusion and outlook

- Able to predict collapse timescale for field dwarf halos with large cross sections
- For median field dwarfs, need $\sim 70 \text{ cm}^2/\text{g}$ for core collapse
- Future:
- Develop suite of SIDM sims with range of cross sections, concentrations, formation histories
 - Do the analytic collapse timescale predictions hold?

