SIDM (Sub)halos in Milky Way and Strong Lens Analogs

CARNEGIE Science Ethan Nadler Pollica SIDM 2023 6/27/2023

Landscape of Cosmological Zoom-in Simulations

- Zoom-in suites have largely focused on Milky Way and cluster-mass hosts
- Milky Way zoom-ins often do not match key constraints on the MW's formation history and satellite population
- Few zoom-ins target low or intermediate host masses, e.g. LMC and strong lens analogs (galaxy groups)

EN, Mansfield, Wang et al., 2209.02675

- 262 high-resolution cosmological zoom-in simulations spanning 4 decades of host halo mass
- Includes the first large suites of **LMC** and strong lens analog host halos
- Run with a unified simulation and analysis code pipeline; all data is publicly available!

web.stanford.edu/group/gfc/symphony

EN, Mansfield, Wang et al. (2209.02675)

Symphony Zoom-in Simulations

➤ concentration

Milky Way-est Zoom-in Simulations

- 20 high-resolution cosmological zoom-in simulations of Milky Way-like systems
- All realizations include LMC and Gaia-Enceladus analogs

Deveshi Buch (Stanford)

Buch & EN et al. in prep.

► mass

Rui An (USC)

Andrew Benson (Carnegie)

Vera Gluscevic (USC)

warm, interacting, fuzzy dark matter

EN et al. in prep.

Simulating Strong Dark Matter Self-interactions

Strong, velocity-dependent self-interactions \rightarrow core-collapse in small halos / core-formation in large halos

- High-resolution Milky Way (+LMC) \bullet zoom-in with strong, velocitydependent DM self-interactions
- Self-consistent analysis of halos in all environments: isolated halos, subhalos, splashback halos,
- Core collapse in ~10% of isolated \bullet halos, ~20% of subhalos down to $10^8 M_{\odot}$

Yang, EN, Yu 2023 (2211.13768)

VD-100 diversifies subhalo profiles, alleviating "too big to fail" problem for brightest MW satellites

VD-100 diversifies central density-pericenter relation; velocity-independent SIDM erases anti-correlation

VD100 diversifies isolated halo profiles, alleviating "too big to fail" problem in the local field

 $r \, (\mathrm{kpc})$

VD-100 qualitatively reproduces observed rotation curve diversity due to core formation + collapse

Combining *P(k)* Suppression with Strong SIDM

Combine VD-100 with self-consistent initial conditions; benchmark vs. P(k) or SIDM-only models

Combining *P(k)* Suppression with Strong SIDM

Halo mass function suppression mainly set by P(k); self-interactions slightly enhance subhalo disruption

Combining *P(k)* Suppression with Strong SIDM

At current WDM limits, suppressed formation/growth of low-mass halos largely erases core collapse

 First group-scale simulation with strong DM self-interactions

EN, Yang, Yu 2023 (2306.01830)

~50% of isolated Group-SIDM halos have kpc-scale cores: analogs of observed ultra-diffuse galaxies

- A strong lensing perturber with no detectable luminous component has an extremely steep central density profile
- Simulations rarely produce such dense (sub)structure, even with baryons

Vegetti et al. 2010 (0910.0760)

Minor et al. 2020 (2011.10627)

Nearly all surviving Group-SIDM subhalos core collapse: analogs of observed strong lensing perturber

A Parametric Model for SIDM Effects

A Parametric Model for SIDM Effects

- Symphony: 262 zoom-ins, including LMC and strong lens analogs;
- Milky Way-est: 20 zoom-ins of Milky Way-like systems with LMC & GE analogs \bullet
- **Beyond-CDM**: 100+ zoom-ins with warm, fuzzy, interacting DM initial conditions
- populations within and surrounding the Milky Way; ~20% of subhalos core collapse
- P(k) Suppression + Strong SIDM: self-consistent initial conditions in strong SIDM scenario **largely erase core collapse** for P(k) suppression at current WDM limits
- Group-SIDM Simulation: extreme self-interactions produce analogs of observed UDGs and strong-lensing perturbers; nearly all surviving subhalos core collapse

VD-100 Milky Way Simulation: strong, velocity-dependent SIDM yields diverse halo

Parametric Model for SIDM Effects: agrees with isolated halo and subhalo populations from cosmological SIDM simulations, enabling rapid predictions in SIDM parameter space

Thanks!

Rui An, Andrew Benson, Deveshi Buch, Xiaolong Du, Vera Gluscevic, Phil Mansfield, Yao-Yuan Mao, Yunchong Wang, Risa Wechsler, Daneng Yang, Haibo Yu, Yiming Zhong

Symphony Zoom-in Simulations

EN, Mansfield, Wang et al., 2209.02675

- Recalibrate WDM halo mass function suppression: full treatment of statistical uncertainties, halo-to-halo scatter, fit degeneracies; integrated with **CLASS**
- Halo mass function suppression slightly enhanced relative to previous fits

EN et al. in prep.

• Interacting dark matter models with small dark acoustic oscillations map to effective WDM models:

with the same initial cutoff:

EN et al. in prep.

• Interacting dark matter models with large dark acoustic oscillations are "colder" than WDM models

- Recalibrate FDM halo mass function suppression: full treatment of statistical uncertainties, halo-to-halo scatter, fit degeneracies; integrated with **axionCAMB**

Core-collapsed (sub)halos are extreme outliers in R_{max} - V_{max} plane; consistent with analytic t_c predictions

Group-SIDM model reproduces entire rotation curves of observed UDGs reasonably well

Group-SIDM effective cross section compared to velocity scales of UDGs and strong-lensing perturber

