Astrophysical Probes of Dark Sector Physics

Signals of self-interacting DM

Oren Slone (New York University / Princeton University)

arXiv numbers: 2108.03243, 2202.00012, 2206.12425, 2207.02861

This talk

Signals in the allowed parameter space of self-interacting models using a formalism that extends to other Dark Sector models.

Mapping micro-physics to macro-physics

self interactions

global dissipation

X

maps to dark matter macro-physics

heat flow

Understand the mapping

gravitational effects

Compare to astrophysical data and answer fundamental questions

SIDM Cross Section

SIDM Cross Section

Observational consequences of

A self gravitating sphere of SIDM

SIDM Simulations

Dynamics of an initially NFW profile

SIDM and Kinetic Theory

Is there a fluid description?

Solve for: $\{\rho, T, P, \overrightarrow{q}, \overrightarrow{u}\}$ (1. EOS: $P \propto \rho T$)

Moments of Boltzmann Equation

$$\frac{\partial}{\partial t} \langle nA \rangle + \frac{\partial}{\partial \vec{r}} \langle n\vec{v}A \rangle - n \langle \vec{v} \cdot \frac{\partial A}{\partial \vec{r}} \rangle - n \langle \vec{F} \cdot \frac{\partial A}{\partial \vec{p}} \rangle = \int d^3 p A \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

Heat flux

5. $\overrightarrow{q} = \kappa \cdot \overrightarrow{\nabla} T$ (when $\lambda_{\text{MFP}} \ll H_{\text{Jeans}} \rightarrow \kappa \propto \lambda_{\text{MFP}} v$)

SIDM and Kinetic Theory

Heat flux when $\lambda_{MFP} > H_{Jeans}$:

 $\kappa \propto \lambda_{\rm MFP} \times v \approx H_{\rm Jeans} \times H_{\rm Jeans}/t_{\rm coll}$

SIDM Dynamics

 $\rightarrow \{\rho, T, P, \overrightarrow{q}, \overrightarrow{u}\}$

- 1. Equation of state
- 2. Continuity equation
- 3. Momentum conservation
- 4. Energy conservation
- 5. Heat flux equation

Gravothermal Collapse Timescale

SIDM Dwarf Galaxies in Real Environments

(Dark) Ram Pressure

Tidal Stripping

Accelerates Core Collapse

Nishikawa et. al., 2020

Tidal Stripping

Evolution is (almost) self-similar

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

Shape of SIDM profiles

Profile with 4 parameters:

And 3 constraints:

- 1. Total mass is conserved
- 2. Density doesn't change at large radii
- 3. Central density core radius scaling

Fits simulations

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

Gravothermal Collapse Timescale

OS, Jiang, Palubski, Lisanti & Kaplinghat, PRELIMINARY

Constraints and Signals from Dwarf Galaxies

Bounds from Dwarfs

Consistent Results for other Dwarfs

SIDM Cross Section

Some SIDM halos must Gravothermally Collapse

SIDM Dwarf Galaxies in Real Environments

Tidal Stripping

(Dark) Ram Pressure

Dark Matter Ram Pressure

Suppresses Core Collapse

Which rates control which process?

Compete with each other

New Fluid Equations

Ram Pressure + Tidal Stripping

Observational Signal

van den Bosch, PRELIMINARY Г. F. Jiang & OS,

Constraint on parameters

Summary and Outlook

<u>Kinetic Theory = Powerful tool to search for dark sector signals</u>

