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Small-scale structure

• What dark matter particles are 
determines small-scale distribution


• Key to identifying particle nature


• Develop semi-analytical, models, 
calibrate with numerical 
simulations, and establish reliable 
models free from shot noise and 
numerical resolution

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.

c� 2017 RAS, MNRAS 000, 1–14
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Scientific goals: develop models of small-
scale structure formation, and apply them to 
various dark matter candidates
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Semi-analytical models of subhalos
• Complementary to numerical simulations


• Light, flexible, and versatile


• Can cover large range for halo masses (micro-halos to 
clusters) and redshifts (z ~ 10 to 0) based on physics 
modeling


• Accuracy: Reliable if it is calibrated with simulations at 
resolved scales
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Semi-analytical modeling
Structures start to form

Smaller halos merge and 
accrete to form larger ones

Subhalos experience 
mass loss

Initial condition:  
Primordial power spectrum

Extended Press-Schechter 
formalism

Modeling for tidal stripping 
and mass-loss rate
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Subhalo accretion

10 Yang et al.

Fig. 7.— Model predictions for the distribution of accretion redshifts for subhalos with ma/M0 = 0.1 (solid lines), 0.03 (dotted lines),
0.01 (dashed lines), 0.003 (long dashed lines) and 0.001 (dot-dashed lines) respectively. Results are shown for host halos of different masses
as indicated in the panels. These results assume a ΛCDM universe and are compared with the results obtained from the 300 h−1Mpc box
N-body simulations with the same cosmology (open circles). For comparison, results obtained from the 100 h−1Mpc box simulations are
also shown (as filled triangles) for cases where statistics are sufficiently good.

tively, where the error-bars have been obtained using 200
bootstrap resamples. The various lines show the predic-
tions based on Model III, and overall match the simu-
lation results remarkably well. Note that the accretion
rate depends strongly on the mass of the host halo. For
the same mass ratio, subhalos in more massive hosts are
accreted later, reflecting the hierarchical nature of struc-
ture formation in the ΛCDM cosmology.

4.4. Un-evolved subhalo mass functions

Finally, let us look at the un-evolved subhalo mass
functions. By integrating Eq. (3) over a given redshift
range, we can obtain the un-evolved mass function of
the subhalos accreted in that redshift range. In Fig. 8
we show the un-evolved mass functions of subhalos ac-
creted in the redshift ranges [0, 1], [1, 2], [2, 3], [3, 4]
and [4, 5], respectively. Results are shown for host ha-
los of different masses, as indicated in each panel. Here

again, symbols indicate the results from our simulation
boxes, while lines show the predictions of Model III.
Clearly, our model is in excellent agreement with the
simulation results at all redshifts and for all host masses.
Upon close inspection, it is clear that the un-evolved sub-
halo mass function for a given redshift range depends on
host halo mass, especially at high redshift: in terms of
the scaled mass, ma/M0, the subhalo mass function at
high z is significantly higher for lower-mass host halos.
Moreover, the normalization of the un-evolved subhalo
mass function at a given redshift for halos of different
masses seem to be roughly proportional to the assem-
bly history of the host halos shown in Fig. 1. To test
this, we show in Fig. 9 the un-evolved subhalo mass
functions for different host halos at the time when the
host halos have assembled a fixed fraction of their fi-
nal masses, i.e. for subhalos accreted in a given range
of log[Ma/M0] range. Results are shown for five dif-
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Infall distribution of subhalos: 

Extended Press-Schechter (EPS) formalism

Yang et al., Astrophys. J. 741, 13, (2011)

d2Nsh

dmaccdzacc
∝

1

2π

δ(zacc) − δM

(σ2(macc) − σ2
M)3/2

exp [−
(δ(zacc) − δM)2

2(σ2(macc) − σ2
M) ]
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Subhalo evolution

• Monte Carlo approach 


• Determine orbital energy and angular momentum


• Assume the subhalo loses all the masses outside of its 
tidal radius instantaneously at its peri-center passage


• Internal structure changes follow Penarrubia et al. (2010)
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B. Numerical simulations

We have also calculated the tidal stripping of subhalos
using N -body simulations. To cover a wide range of halo
mass, we used five large cosmological N -body simula-
tions. Table I summarizes the detail of these simulations.
The ⌫2GC-S, ⌫2GC-H2 [38], and Phi-1 simulations cover
halos with large mass (⇠1011M�). The Phi-2 simulation
is for intermediate mass halos (⇠107M�). To analyze the
smallest scale (⇠10�6M�), the A N8192L800 simulation
is used. The cosmological parameters of these simula-
tions are ⌦m = 0.31, �0 = 0.69, h = 0.68, ns = 0.96,
and �8 = 0.83, which are consistent with an observa-
tion of the cosmic microwave background obtained by the
Planck satellite [2, 39] and those adopted in the other sec-
tions of the present paper. The matter power spectrum
in the A N8192L800 simulation contained the cuto↵ im-
posed by the free motion of dark matter particles with a
mass of 100 GeV [9, 26]. Further details of these simula-
tions are presented in Reference. [38] and Ishiyama et al.
(in preparation).

All simulations were conducted by a massively paral-
lel TreePM code, GreeM [40, 41].1 Halos and subha-
los were identified by ROCKSTAR phase space halo and
subhalo finder [42]. Merger trees are constructed by con-
sistent tree codes [43]. The halo and subhalo catalogs
and merger trees of the ⌫2GC-S, ⌫2GC-H2, and Phi-1
simulations are publicly available at http://hpc.imit.
chiba-u.jp/~ishiymtm/db.html.

C. Comparison

We calculate the mass-loss rate of the subhalos for vari-
ous redshift z and the host mass Mhost (defined as M200).
First, we choose the subhalo mass at accretion macc uni-
formly in a logarithmic scale between the smallest mass
10�6M� and the maximum mass 0.1M(zacc). For each
set of macc and zacc (as well as z and Mhost), we calcu-
late the mass-loss rate ṁ following the prescription given
in Sec. III A, by taking a Monte Carlo appraoch; i.e., by
drawing the concentration of the host halos, subhalo con-
centration, circularity ⌘, and radius of the circular orbit
Rc of subhalos following the distributions of each of these
parameters.

In Figure. 1, we show results of our Monte Carlo sim-
ulations. We find that for a large dynamic range of sub-
halo mass m (over 19 orders of magnitude as shown in
the insets) down to very small masses such as 10�6M�, a
single power-law function [Eq. (1)] gives a very good fit,
which confirms the physical origin of this relation, not
just being a simple phenomenological fit.

We compare the results of the Monte Carlo calcula-
tions to those of the N -body simulations as described in

1 http://hpc.imit.chiba-u.jp/~ishiymtm/greem/

FIG. 1. Mass-loss rate of subhalos as a function of orbit-
averaged subhalo mass m in units of the host mass Mhost

for Mhost = 1013M� and z = 0 (top), Mhost = 107M� and
z = 5 (middle), and Mhost = 10�2M� and z = 32 (bottom).
Cyan points show the Monte Carlo simulation results. Blue
squares with error bars show the results obtained by N -body
simulations. Thick error bars correspond to the 50% of the
simulated halos around the median, while thin ones to the
90%. We also show the results of the Monte Carlo simulations
of wider mass range in inserted panels, which also include the
fitting results with Eq. (1), as overwritten solid lines on the
Monte Carlo points.

Sec. III B, which is also shown in Figure. 1 for m/Mhost &
10�5 (m is the orbit-averaged mass of the subhalos), re-
solved in the N -body simulations. At relatively small
redshifts for both Mhost = 1013M� and 107M�, we find
very good agreement between the two prescriptions. We
also check the applicability of the analytical approach by
comparing the results with those of N -body simulations
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Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)

8

·m = − A
m(z)

τdyn(z) [ m(z)
M(z) ]

ζ

Cf., Jiang, van den Bosch, Mon. Not. R. Astron. Soc. 458, 2848 (2016)
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Distribution of subhalo quantities
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dNsh

dθ
= ∫ dma ∫ dza

d2Nsh

dmadza
δ(θ − θ(ma, za))

θ = {m, rs, ρs, …}

Subhalo accretion

Subhalo evolution



Subhalo mass function

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)
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condition of tidal disruption as follows:

dNsh

dm
=

X

i

wi�(m�m0,i)

⇥

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥⇥[rt,i(z0|cvir,acc)� 0.77rs,i(z0|cvir,acc)],

(28)

where �(x) and ⇥(x) are the Dirac delta function and
Heaviside step function, respectively.

The subhalo mass function has been studied most com-
monly through N -body simulations in the literature. We
show m2dNsh/dm obtained by the numerical simulations
and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subahalo mass
function for host masses Mhost = 1.8 ⇥ 1012M� and
5.9⇥1014M� at z = 0 with the fitting functions to the re-
sults of Refs. [20] and [44], respectively. In both cases, the
simulations and analytical models show reasonable agree-
ment, while our model predicts fewer subhalos. In the
middle panel of Fig. 2, we compare the mass function at
z = 2 and z = 4 compared with results of Ref. [45], for the
host that has the mass ofMhost = 1013M� at z = 0. This
again shows very good agreement between the two ap-
proaches, where the subhalos are resolved in the numer-
ical simulations. Our model can also be applied to cases
of even smaller hosts. In the bottom panel of Fig. 2, we
compare the subhalo mass function for Mhost = 106M�
and 107M� at z = 5 with the results of the Phi-2 simu-
lations in Sec. III B. Down to the resolution limit of the
simulations that are around 500–1000M�, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
since it is physically motivated, the behavior at low-mass
end down to very small masses can also be regarded as
reliable.

In Fig. 3, we show the slope of the subhalo mass func-
tion

� ↵ =
d ln(dNsh/dm)

d lnm
, (29)

(i.e., dNsh/dm / m�↵) for the same models as in Fig. 2.
We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.

Fig. 4 shows the mass fraction of the host mass that is
contained in the form of the subhalos:

fsh =
1

Mhost

Z 0.1Mhost

10�6M�

dm m
dNsh

dm
. (30)

At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.
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Distribution of rs and ρs

Good agreement with simulation results (Vea Lactea II)

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker, Phys. Rev. D 102, 061302 (2020) 

ρ(r) =
ρs

(r/rs)(r/rs + 1)2 3

FIG. 1. Satellite density in (log rs, log ⇢s) space from our model, d2Nsh/(d ln rsd ln ⇢s), for three di↵erent thresholds for forming
satellites in the subhalos, V th

peak = 25, 12, and 6 km s�1. The green dots show subhalos found in the numerical simulation Via
Lactae II [10] obeying the same threshold criteria on Vpeak.

In Fig. 1, we show the subhalo number density in the (log rs, log ⇢s) parameter space (here and in the following,
we omit the subscript 0), for three di↵erent threshold values of Vpeak, the peak value of the subhalo’s maximum
circular velocity (which occurs at accretion in our model): V th

peak = 25 km s�1 (corresponding to subhalos hosting

classical dSphs), V th
peak = 12 km s�1, and V th

peak = 6 km s�1 (describing two possibilities for ultrafaint dSphs). Our
prior distribution for satellites is proportional to the subhalo number density multiplied by formation probability of
a satellite in the given subhalo Pform, which is a function of Vpeak (see main text). The satellite prior distribution in
the (log rs, log ⇢s) parameter space shown in Fig. 1 is then obtained after marginalizing over rt. For this figure we
have adopted a step function formation probability of Pform(Vpeak) = ⇥(Vpeak � V th

peak) to facilitate comparison with
numerical simulations.

Figure 1 also shows the values of (log rs, log ⇢s) of each subhalo found in the N-body simulations Via Lactea II
(VL-2) [10] (green points). The density profile data for the subhalos of VL-2 are given in terms of Vmax and rmax,
which we convert to rs and ⇢s assuming an NFW profile. In all the cases shown in Fig. 1, we see good agreement
between the analytic models adopted in this work and VL-2 simulations.

The simulation contains some subhalos at small rs and small ⇢s, in regions of vanishing small prior density. These
subhalos might have an anomalous merging history, or not be fully virialized, and hence are not captured by our
model. However, we note that if the prior were to include them this would shift the resulting J factors to even lower
values.

II. SUB-SUBHALO BOOSTS OF THE DWARF SPHEROIDALS

Dwarf galaxies form in subhalos, and they might host their own subhalos, i.e., sub-subhalos. Since the dark matter
annihilation rate is boosted in the presence of such sub-subhalos, we need to assess the importance of this e↵ect,
i.e. the annihilation boost factor [2] of the dSphs. Previous work estimated the e↵ect and found it to be negligibly
small [11, 12]. Here we revisit the question in the context of the improved subhalo model presented in the previous
section.

The gamma-ray emissivity profile from WIMP annihilation in the sub-subhalos traces the radial distribution of the
sub-subhalos, for which we adopt [1 + (r/rs)2]�3/2, while that of the smooth component follows the NFW profile
squared. The subhalo hosting a dSphs su↵ers from tidal stripping down to radius rt, after which the luminosity
from the sub-subhalos Lsh and from the smooth component Lsm (within dSphs’ virial radius at accretion, rvir,a), will
change to Lsh(< rt) and Lsm(< rt), respectively, as follows:

Lsh

Lsh,a
=

r3s

h
sinh�1(rt/rs) � rt/

p
r2t + r2s

i

r3vir,a

h
sinh�1(rvir,a/rs,a) � rvir,a/

q
r2vir,a + r2s,a

i , (4)

Lsm

Lsm,a
=

⇢2sr
3
s

⇥
1 � (1 + rt/rs)�3

⇤

⇢2s,ar3s,a [1 � (1 + rvir,a/rs,a)�3]
, (5)

where the expressions in the right-hand side of Eqs. (4) and (5) can be obtained from the volume integral of [1 +
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Summary: Semi-analytical modeling

• Benchmark models for CDM 


• Free from resolution (useful for small mass ranges)


• Free from shot noise (useful for large mass ranges)


• Well tested against numerical simulations of halos with various masses 
at various redshifts


• Quick implementation, which is crucial to survey through parameter 
spaces for different dark matter models
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Public code: Semi-analytical 
subhalo models (CDM)

• Semi-Analytical SubHalo Inference ModelIng


• “Cold” SASHIMI: github.com/shinichiroando/sashimi-c


• Only 760 lines of simple python codes, which enable to 
calculate (nearly) everything we did in Hiroshima et al. 
(2018)


• Subhalo mass function, substructure boost of dark 
matter annihilation, etc.


• Well documented and useful sample codes provided

14
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Applications
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.10% for the hosts with Mhost � 1013
M�. The bottom left panel of Figure 5 shows the luminosity

ratio Ltotal/Lhost,0 = 1 � f
2
sh + Bsh (Equation 15) as a function of the host masses for various values

of the redshifts. The bottom right panel of Figure 5 shows comparison with the results of the other
work [41,44,48]. We note that the analytic models do not rely on the subhalo mass function prepared
separately, as the models can provide them in a self-consistent manner. The resulting boost factors are,
however, found to be more modest than the previous results. This is mainly because the subhalo mass
function adopted in the literature is larger than the predictions of the analytic models. However, they
might be larger because of halo-to-halo variance. See discrepancy between predictions of the subhalo
mass function for the 1.8 ⇥ 1012

M� halo by Hiroshima et al. [50] and the result of Springel et al. [37]
shown in the top left panel of Figure 4.

Figure 5. The subhalo boost factor Bsh as a function of the host mass M200 for various values of redshift
z (top left) based on the analytic models by Hiroshima et al. [50]. The effect of subn-subhalos, up to
n = 3, is shown in the right panel in the case of z = 0. Note that the three curves except for n = 0
overlap with each other. The bottom left panel shows the ratio between the total luminosity including
the subhalo boost and the luminosity in absence of subhalos, Ltotal/Lhost,0 = 1 � f

2
sh + Bsh. The bottom

right panel shows comparison of Bsh between several models at z = 0: G12 [41], SC14 [44] and M17 [48]
are based on N-body calculations while H18 [50] is on analytic calculations. The subhalo mass function
for the N-body results is assumed to be dNsh/dm µ m

�a.

Finally, for convenience of the reader who might be interested in using the results without going
into details of the formalism, we provide fitting functions for both the subhalo mass functions and the
annihilation boost factors. They are summarized in Appendix A.

2

models of Ref. [40] and extend it to the WDM cosmol-
ogy by modifying the mass-loss rate, and adopting ap-
propriate changes to the EPS formalism [41] and to the
concentration-mass-redshift relation for WDM [42]. Our
models enable us to directly probe subhalo properties
for any WDM models as well as any halo and subhalo
masses, resulting in competent and solid constraints, for
which we make extensive comparison pointing out di↵er-
ences among various approaches.

We calculate the number of satellite galaxies in the
Milky Way for a range of WDM and sterile neutrino
models and compare them with the observed number of
satellite galaxies. For observational data, we use 270 es-
timated satellite galaxies observed by the Dark Energy
Survey (DES) and PanSTARRS1 (PS1) after complete-
ness correction [43], as well as a subset of 94 satellite
galaxies that contain kinematics data, to obtain lower
limits on the WDM and sterile neutrino mass. To derive
our canonical, conservative constraints, we assume that
all the subhalos host satellite galaxies. Implementing
galaxy formation in subhalos above some certain thresh-
olds (such as mass) will e↵ectively reduce the number
of satellites that the models predict and lead to stronger
limits. Therefore, we also investigate di↵erent galaxy for-
mation conditions.

As a result, we obtain very stringent and model-
independent constraints on the WDM masses of > 3.6–
5.1 keV at 95% confidence level (CL), estimated for a
range of Milky-Way halo masses M200 = (0.6–2.0) ⇥
1012M� (Fig. 1), where M200 is defined as the enclosed
mass within the radii in which the mean density is 200
times the critical density. We also exclude the sterile neu-
trino dark matter with masses lighter than 11.6 keV for a
Milky-Way halo mass of 1012M� (Fig. 2). By assuming
that only halos with masses heavier than 108M� form
galaxies in them, we obtain even more stringent (model-
dependent) limits on the WDM masses of > 9.0 keV for
Milky-Way halo mass 1012M�.

II. SUBHALO MODELS

A. Subhalo properties

In order to estimate the number of satellites in the
Milky-Way halo, we need models that describe the for-
mation and evolution of both halos and subhalos. The
Milky-Way subhalos are characterized with the mass m,
parameters rs and ⇢s of the Navarro-Frenk-White (NFW)
profile [54], and the truncation radius rt beyond which
the density quickly approaches to zero [55]. All these
quantities are at the current redshift z = 0, after the
tidal evolution of the subhalos. In addition, some sub-
halos may get completely disrupted when the tidal e↵ect
strips substantial amount of masses in the outer radii
such that rt < 0.77rs [56] (but see also Ref. [57]). It
is therefore important to model the subhalo evolution,
and relate the present quantities with those at accretion

FIG. 1. Excluded regions at 95% CL of the WDM mass as
a function of the Milky-Way mass considering the canonical
constraints (red) as well as by adopting the satellite forming
condition with ma > 108M� (yellow). Moreover, the conser-
vative constraints considering satellites with kinematics data
of Vmax > 4 km/s are also shown (purple). The black markers
represent limits from the literature (Sec. V).

FIG. 2. Excluded regions at 95% CL of the mixing angle
sin2(2✓) as a function of sterile neutrino mass m⌫s for the
Milky-Way mass of M200 = 1012M�. The grey hatched
area represents upper limits from the current X-ray con-
straints [44–51] and the black star the best-fit of the uniden-
tified 3.5 keV line with mixing angle, sin2(2✓) ' (0.2–
2)⇥ 10�10 [52, 53].

before experiencing tidal e↵ects.
At the epoch of accretion when a halo becomes a sub-

halo, its density structure is completely characterized by
three parameters: accretion redshift za, virial mass ma,
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We investigate the primordial curvature perturbation by the observation of dark matter sub-
structure. Assuming a bump in the spectrum of the curvature perturbation in the wavenumber of
k > 1 Mpc�1, we track the evolution of the host halo and subhalos in a semi-analytic way. Taking
into account possible uncertainties in the evaluation of the tidal stripping e↵ect on the subhalo
growth, we find a new robust bound on the curvature perturbation with a bump from the number
of observed dwarf spheroidal galaxies in our Galaxy and the observations of the stellar stream. The
upper limit on the amplitude of the bump is O

�
10�7

�
for k ⇠ 103 Mpc�1. Furthermore we find the

boost factor, which is crucial for the indirect detection of dark matter signals, is up to O
�
104

�
due

to the bump that is allowed in the current observational bounds.

Introduction: The observation of the cosmic microwave
background (CMB) radiation strongly supports inflation
at the early stage of the universe. The CMB observa-
tion constrains the amplitude As and the spectral in-
dex ns of the scalar perturbation as As = (2.099 ±

0.029)⇥10�9 and ns = 0.9649±0.0042 at the pivot scale
k⇤ = 0.05 Mpc�1 [1]. At a smaller scale, on the other
hand, the constraint on the curvature perturbation is re-
laxed. For instance, the amplitude for the wavenumber
of k > O(1) Mpc�1 is constrained by µ- and y-type dis-
tortion in the CMB observation [2, 3], the overproduction
of the primordial black holes (PBHs) [4], density profile
of ultracompact minihalos [5, 6], and the free-free emis-
sion in the Planck foreground analysis [7]. Despite the
constraints, the scalar amplitude in the small scale can
be much larger than O

�
10�9

�
. In this letter, we point

out that the curvature perturbation in such a small scale
gives impact on the evolution of the hierarchical struc-
tures of galaxies, which is traced by dark matter halos of
the Universe.

Dark matter plays a crucial role in the structure for-
mation; the quantum fluctuation produced by inflation
seeds the density fluctuation, which grows in the gravi-
tational potential of dark matter. Therefore the imprint
of the small scale perturbation during the inflation is ex-
pected to remain in the current structure of dark matter
halos. Subhalos, which reside in larger-scale halos, are
especially promising objects to reveal the nature of dark
matter; dwarf spheroidal galaxies (dSphs) can form inside
subhalos and they have been found and observed inten-
sively these days in the prospects to detect dark matter
annihilation signals [8–10].

In this paper we study the cosmological consequences
of the primordial curvature perturbation in the small
scale. Assuming an additional bump in the curvature
perturbation, we investigate the subhalo evolution by ex-
tending the SASHIMI package, theoretically-motivated

FIG. 1. Excluded region on the primordial curvature per-
turbation. The tidal model (a) is adopted. Upper regions
separated by lines are excluded. “Satellite counts” (orange,
dashed) and “Stellar stream ” (red, dashed) corresponds to
the limits by the observed number of dSphs and the observa-
tion of the stellar stream, respectively. See Eqs. (7) and (8).
As a reference, the constraint due to µ-distortion is shown as
“µ-distortion”, which is given in Ref. [4]. Shaded region on
the left is disfavored from the Lyman-↵ observations [11].

model for the tidal stripping process calibrated by the
N -body simulation [12, 13].1 We give a new conser-
vative and robust bound on the curvature perturba-
tion by using the observed number of the dSphs in the
Galactic halo [14, 15] and the observations of the stellar
stream [16, 17]. Our main result is shown in Fig. 1. Addi-

1 https://github.com/shinichiroando/sashimi-c

WIMP annihilation

Hiroshima et al., Phys. Rev. D 97, 123002 (2018)

Ando et al., Phys. Rev. D 106, 103014 (2022)

Primordial power spectrum

Warm dark matter

Dekker et al., Phys. Rev. D 106, 123026 (2022)

Figure 3: Constraints on the DM-neutrino cross section as �DM–⌫,0 = const at 95 CL as a function of

the Milky-Way mass considering the kinematics data of 94 Milky-Way satellites with Vmax > 4 km/s

(blue) as well as the data of 270 Milky-Way satellites imposing the satellite forming condition of

ma > 108M� (yellow). The constraints from CMB (solid line) [23,32] and Lyman-↵ (dashed line) [34]

are shown for comparison.

Figure 4: Constraints on the DM-neutrino cross section as �DM–⌫,2 / E
2
⌫ at 95 CL. �0

DM–⌫,2 is the

cross section normalized by relic neutrino momentum today, �DM–⌫,2 = �
0
DM–⌫,2(E⌫/E

0
⌫)

2. The other

details are the same as figure 3.
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CDM
CDM

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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Estimating density profiles of dSphs

• Estimates of rs and ρs usually rely on Bayesian statistics:


• If data are not constraining, the posterior depends on prior choices


• Usually log-uniform priors are chosen for both rs and ρs 

• Doing frequentist way is very challenging, which is done only for classical dwarfs 
(Chiappo et al. 2016, 2018)

P(rs, ρs |d) ∝ P(rs, ρs)ℒ(d |rs, ρs)
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Application to ultrafaint dSphs

• Having small data only does not break the 
degeneracy between rs and ρs


• Cosmological arguments have been adopted 
to chop off upper regions of the parameter 
space (e.g., Geringer-Sameth et al. 2015)


• Satellite prior does this job naturally as well 
as breaks the degeneracy


• This is hard to achieve with simulations as 
they are limited by statistics of finding dwarf 
candidates

• Black: Likelihood contours 
• Green: log [J/(GeV2/cm5)] 
• Red: Prior density 
• Blue: Posterior density 

Ando et al., Phys. Rev. D 102, 061302 (2020) 
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N-body simulations of isolated system

• Testing self-interactions of DM 
particles would require a precise 
modeling of 


• Thermalization of SIDM halo and 
subhalo


• Tidal stripping / Ram pressure


• Develop a semi-analytic model of 
infalling subhalos to a MW-sized 
halo and calibrate it with (isolated) 
N-body sims Milky-Way-sized host halo 


1012M⊙

 subhalo 109M⊙
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Isolated N-body halos: Initial conditions
• Host: NFW halo ( ) 


• Satellite: NFW halo ( )


• MAGI: Generator of spherical N-body halos in dynamical equilibrium


• https://bitbucket.org/ymiki/magi/src/master/


• No disc components for now


• Set the initial condition of the satellite with its energy  and angular 
momentum 


•  where 


•  → apocenter = 243.6 kpc

M200c = 1012 M⊙, c = 10, rs = 21.1 kpc

M200c = 109 M⊙, c = 6, rs = 1.68 kpc

E
L

E =
1
2

V2
c + ΦNFW−host(Rc), L = ηRcVc Vc = (GMhost /Rc)1/2

xc = Rc/Rhost,200c = 0.5, η = 0.6

y

x

211 kpcRhost,200c =

243.6 kpc

satellite
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)

SIDM



Gravothermal fluid model

Host halo density 
ρh(r, t) ρh(r, t + Δt)

E.g., Balberg et al. 2002

Density 
ρsub(r, t)

Position & Velocity 
xsub(t), vsub(t)

Subhalo

Bound Mass 
Msub(t)

··xsub = − ∇Φh + (Dynamical Friction) + (Ram Pressure Deceleration)

·Msub = (Tidal stripping) + (Ram pressure evaporation)

Gravothermal fluid model (e.g. Balberg+2002) Density 
ρsub(r, t + Δt)

Position & Velocity 
xsub(t + Δt), vsub(t + Δt)

Bound Mass 
Msub(t + Δt)

dM/dr = 4πr2ρh(r) d(ρσ2
v )/dr = − GMρ/r2

 re-arranges  and  Heat flux = − κ (m /kB) ∂σ2
v /∂r ρh σv

Mass conservation Hydrostatic equilibrium

CDM-like tidal evolution proposed  
in Green & van den Bosch (2019)

Analytic model in Kummer+2018Analytic model in Chandrasekhar 1943
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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• Green and van den Bosch (2019) have found that the tidal 
stripping effect in CDM subhaloes can be expressed as





• In the SIDM case, we naively expect that





• We evolved isolated haloes with the same mass as the subhalo 
at initial states and then compute





• Confirmed  in our simulations

ρsat(r, t) = HGB19(r, fb(t)) ρNFW(r)

ρSIDM,sat(r, t) = HGB19(r, fb(t)) ρSIDM,iso(r, t)

Hsim(r, t) =
ρsat(r, t)
ρiso(r, t)

Hsim ≃ HGB19

Test 1: CDM-like tidal stripping model can work or not

Mass fraction of subhalos at t
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Caveats and outlook
• We developed a semi-analytic model of SIDM subhaloes in a MW-sized host with 

ideal N-body sims


• We found a non-trivial effect in the subhalo mass loss rate for the SIDM scenario


• We tested our models with simulations by varying subhalo orbits, SIDM cross 
sections, initial subhalo profiles


• To do:


• (1) Comparisons of our model with cosmological simulations; (2) Include the 
baryonic disc in a host halo; (3) Velocity dependence of cross section; (4) 
Gravothermal collapse
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Comparison with cosmological simulations
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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TangoSIDM: Tantalising models of SIDM

We implemented SIDM on the 
gravity and hydrodynamics 
solver code: SWIFT

TangoSIDM consists on a set of 
DM-only and hydrodynamical 
cosmological simulations of (25 
Mpc)3

Correa, Schaller, Ploeckinger, Anau Montel, Weniger, Ando, 
Mon. Not. R. Astron. Soc. 517, 3045 (2022)
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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TangoSIDM: Rotation curves
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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TangoSIDM: Rotation curves

Structure and assembly of SIDM cluster-size haloes 3

Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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TangoSIDM: Gravothermal collapse

Structure and assembly of SIDM cluster-size haloes 3

Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Conclusions and prospects
• Small-scale distribution of dark matter is essential in discriminating 

different particle dark matter candidates


• We base our theoretical studies on benchmark subhalo models for 
CDM/WIMP


• We theoretically model the evolution of SIDM subhalos using 
gravothermal fluid model and calibrate the model parameters 
against idealized N-body simulations of minor merger


• Goal: refine this calibration procedure, incorporate these SIDM mass-
loss models with EPS theory, and make SASHIMI-I
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