Dark Matter Distributions in the dwarf spheroidal galaxies in the Subaru-PFS era

Kohei Hayashi (NIT, Sendai College)

June 27, 2023

SIDM workshop: Models, Simulations and Signals

Dwarf spheroidal galaxy (dSph): the promising targets for studying DM

• **Proximity (30-100 kpc) Clean targets for indirect DM searches Dark-matter rich system**

ESA/Gaia/DPAC

Dwarf spheroidal galaxy (dSph): the promising targets for studying DM

on their dark matter density profiles. • Dark-matter rich system

To gain insight into the properties of dark matter from the Galactic dwarf spheroidals

FDM Mass (eV)

it is necessary to place tighter constraints

Non-spherical dynamical mass models

Dark matter density profiles: UFDs KH, Hirai, Chiba & Ishiyama (2022)

$(0.0 \le \gamma \le 2.0)$

Diversity of the DM distributions?

3. Mass modelings

DM densities at 150 pc Motivated mainly by Kaplinghat et al. (2019)

- The dwarf satellites are widely distributed on this plane.
- For comparison, LCDM based subhalos (Vpeak>25km/s) are also plotted.
- The dwarfs are reasonably consistent with subhalos, except for Ant2, Cra2, and Tuc3 which deviate significantly from the simulations.
- This deviation *cannot* be explained by the CDM subhalos detected by commonlyused subhalo finders.

♦	Draco		Boötes I	Hercules	•	Seg
\diamondsuit	Fornax	•	Canes Venatici I	Horologium I	0	Tria
\diamond	Carina		Canes Venatici II	Hydra II	D	Tuc
\diamondsuit	Sculptor		Coma Berenices	Leo IV	•	Tuc
\diamond	Sextar.s		Crater 2	Leo V		Tuc
\diamond	Ursa Minor		Draco 2	Leo T		Urs
\diamond	Leo I	٠	Eridanus II	Pisces II		Urs
\diamond	Leo I		Grus1	Reticulum II		Wil
	Antlia 2		Grus 2	Segue 1		

Toward Subaru-PFS era

Subaru-HSC/PFS: deep & wide photo. & spec.

Hyper Suprime Cam

Prime Focus Spectrograph

Subaru-HSC/PFS: deep & wide photo. & spec.

Hyper Suprime Cam

Prime Focus Spectrograph

Subaru-HSC: Narrow band selection

4 pointing HSC data for UMi

Subaru-HSC: Narrow band selection

Komiyama (incl. KH) et al. 2018

Subaru-HSC/PFS: deep & wide photo. & spec.

Hyper Suprime Cam

Prime Focus Spectrograph

Uniqueness of Subaru-PFS

Subaru Telescope + Wide Field of View || Wide and Deep spec. survey

Uniqueness of Subaru-PFS

Wide & deep PFS survey:

Huge number of stellar kinematics out to the outskirts of the Galactic dSphs.

Mock dynamical analysis

I. Axisymmetric Jeans analysis KH and PFS-GA WG

- Estimated mock DM density profiles from non-spherical Jeans analysis with current small data (pink) and PFS forecast large data volumes (purple).
- From the current analysis, large data volume over wide area by PFS can recover the input density profile from the center to outer parts of a mock galaxy.

Mock dynamical analysis

II. Higher-order velocity moments (spherical) D. Wardana, M. Chiba, and KH (in prep)

Kurtosis:

$$\kappa = \frac{\overline{v^4}}{(\sigma^2)^2}$$

Higher-order velocity moments can break the degeneracy!

Non-trivial effects on dynamical analysis should be considered

- Contamination stars (MW think disk, thin disk, and halo stars)
- Binary stars (Binary system can inflate l.o.s velocity dispersions)
- Tidal forces (Deviation from dynamical equilibrium)

PFS-GA science team

Binary stars

Contamination stars

L. Dobos (JHU)

C. Filion (JHU)

Take Home Message

- properties of dark matter.
- even though several dSphs favor cusped DM halo.
- detected by commonly-used subhalo finders.

• The Galactic dwarf spheroidal galaxies are ideal target for studying the basic

The current constraints on their DM density profiles still have large uncertainties,

• On the $\rho_{\rm DM,150\ pc}$ – $r_{\rm peri}$ plane, **Ant2, Cra2, and Tuc3** deviate significantly

from the simulations. This deviation *cannot* be explained by the ΛCDM subhalos

 Subaru HSC/PFS enable us to hunt the large number of dSph's stars out to their outskirts, and thereby placing tighter constraints on their DM density profiles.