Current state and prospects of strong gravitational lensing in probing dark matter at and below the galaxy formation threshold

Simon Birrer

Astrophysical small scale structure probes exploring 20 orders in mass of discovery space

Credit: K. Bechtol

Astrophysical small scale structure probes exploring 20 orders in mass of discovery space

Credit: K. Bechtol

Strong gravitational lensing

Strong gravitational lensing

https://github.com/sibirrer/lightcone

5

Strong lensing: multiple images of a background source

Figure by Vegetti+2010

Strong lensing: sensitivity to small scale dark matter haloes

Figure by Vegetti+2010

Strong lensing: sensitivity to small scale dark matter haloes

Figure by Vegetti+2010

Strong lensing: a forward modeling example

Strong lensing: a forward modeling example

Lensing: SB+2015, 2016, ... Shapelets: Refregier 2003 Software: SB&Amara 2018, SB+2021

De-lensing de-convolution with linear basis functions

Formulation as a **linear problem**

See also: Waren&Dye 2003, Suyu+2006, Vegetti+2006 for (adaptive) pixelized source reconstruction techniques

De-lensing de-convolution: example with perfect lens model

Input image

Reconstructed image

Image residuals

Input source

Reconstructed source

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

n max = 0

De-lensing de convolution: example with missing (sub)-structure

Input image

Reconstructed image

Input source

Reconstructed source

Image residuals

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

Keck adaptive optics imaging

Resolved data can localize lensing substructure through forward modeling

Hezaveh+ 2016

ALMA interferometry

Koopmans 2005, Vegetti+2010, 2012, 2018 SB+2017, Hezaveh+ 2016, Ritondale+2018

Nierenberg+2014, 2017 Hsueh+2016, 2017, 2020, Gilman+2018, 2019, 2020a,b

Flux-ratios are sensitive to completely dark structure

exclusion regions for a certain type of sub-clump

Inference of dark matter microphysics

Figure from Wagner-Carena, Aalbers, SB+ 2021

Inference of dark matter microphysics

- complex substructure and line-of-sight halos
- complex source morphology
- complex data

Figure: Gilman with PyHalo

End-to-end inference of dark matter microphysics

Individual detection

How do we know what we detect and what not?

How do we statistically interpret the signal?

Statistical detection

How do we know where the signal is coming from?

What is a good summary statistics that captures the **information** and is **robust** to systematics?

ABC, Machine learning, residual power spectrum, sensitivity map,...

Results: Flux ratios

- statistical detection of substructure
- consistent with CDM
- competitive constraints on WDM

Credit: STSCI, GO-15177, 13732 PI Nierenberg

WDM constraints from 8 quad lenses

Results: Flux ratios

mass-concentration relation from 11 quad lenses

Results: imaging

Subhalo is a line-of-sight object

Sengul+2022

Subhalos have unusually high concentrations

Minor et al. 2021

Results: imaging

<

Forward modeling and simulation based inferences with Approximate Bayesian Computing (ABC)

>2keV WDM ruled out (caveat: no line of sight structure modeled)

Results: imaging

Fuzzy dark matter from a radio arc

Powell et al. 2023

substructure in clusters

See also Meneghetti+2022 for larger substructure

Galaxy-scale density profiles

- Understanding of (dark matter) density profiles required to accurately measure the Hubble constant with time-delay cosmography
- Extensive efforts in data acquisition and modeling underway
- Same data and results can be used to interpret dark matter microphysics on galactic scales

Constraining galaxy density profiles with lensing and kinematics

0	0)	-						
SD55 J1420+6019	5055 J2321-0939	SDSS J1106+5228	SDS5 J1029+0420	SDSS J1143-0144	5055 30955+0101	SDSS J0841+3824	5055 30044+0113	5055 J1432+6317	SDSS J1451-0239
	ø			0	1				1.00
SDSS J0959+0410	S0SS J1032+5322	SDSS J1443+0304	SDSS J1215+0830	SDSS J2238-0754	SDSS J1538+5817	SDSS J1134+6027	SDSS J2303+1422	5055 J1103+5322	SDSS J1531-0105
-		0					۰.		
SD55 J0912+0029	SDSS J120410358	SDSS J11531+612	SDS5 J2341+0000	SDSS 01403+0005	5055 30936+0913	SDS5 J1023+4230	SDSS J0037-0342	5055 J1402+6321	SDS5 J0728+3835
٢			\odot						
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0846+1006	SDSS 11251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	5068 J1250+0523	SDSS J0959+4416
		1	0				6		
SDSS J0956 5100	5055 J0822 12652	SDSS J1621 (3931	S0S5 J1630+4520	SDSS J111210825	5D55 J0252 (0039	SDS5 J1020+1122	SDSS J14301 4105	5055 J1435 0000	SDSS J0109 (1500
		١				()	()		
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3215	SDSS J0216-0813	SDSS 10935-0003	SD5S J0330-0020	SDSS J1525+3327	SDSS J0903+4116	5055 J0008-0004	SDSS J0157-0056
SLACS: The Sloan Lens ACS Survey www.SLACS.org									
A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)									

Constraining galaxy density profiles with lensing and kinematics

Joint hierarchical analysis of H0, galaxy density profiles and stellar anisotropy

SB+2020 TDCOSMO IV

Constraining galaxy density profiles with lensing and kinematics

Shajib, Treu, SB+2020

This decade!

Euclid (Discovery and imaging)

KAGRA/LIGO/VIRGO (gravitational waves)

James Webb Space Telescope (high resolution spectroscopy)

E-ELT, TMT, GMT (high resolution imaging)

Vera Rubin Observatory (discovery and time-domain)

10'000+ strong lenses 200+ quasar lenses Time-domain information

Square Kilometer Array, (ng)VLA (high resolution interferometry)

Nancy Grace Roman telescope (discovery and imaging)

Forecast constraints with JWST- 38.4 hours to observe 31 lenses in Cycle 1

Simulated JWST MIRI image JWST-GO-02046, PI Nierenberg

Forecast constraints with JWST- 38.4 hours to observe 31 lenses in Cycle 1

Simulated JWST MIRI image JWST-GO-02046, PI Nierenberg

We will be able to detect completely dark halos!

How to perform inference with a sample of 100-1000 lenses?

Are convolutional neural networks up to the task?

Figure from Wagner-Carena, Aalbers, SB+ 2022

Next-generation high-resolution capabilities (ELT, ngVLA, SKA)

Figure: Vegetti

Next-generation high-resolution capabilities (ELT, ngVLA, SKA)

Input image

Input source

Reconstructed image

Reconstructed source

n max = 0

Image residuals

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

Next-generation high-resolution capabilities (ELT, ngVLA, SKA)

Think big with lensing!

- lensing is sensitive to the projected central density of sub haloes (how about combining it with satellite kinematics?)
- high (anomalous?) concentrations have been found. Do we have already a signal of something?
- redshift and mass evolution: A large sample of lenses can be sensitive to 'smoking gun' signals... so tell me what these signals are!

Summary

Gravitational lensing is...

- **unique** window to the dark universe
 - probes small (dark) matter structure

- **competitive** with other cosmological probes
- advancing with increased sample size and improved observational capabilities!
- robust with revised and well-tested and validated methodology