



## **Observational Frontier for Dark Matter Physics** Ting S. Li



**University of Toronto** 

Pollica Workshop on Self-Interacting Dark Matter: Models, Simulations and Signals Pollica, June 26, 2023

### Wide-Area Imaging



### **Spectroscopic Measurements**

to pandemic, and here they are! We need more work on simulations/modeling to catch up!

## There are a lot of observing results you might have missed due

## The next decade will be full of data for dark matter astrophysics!

## There are a lot of observing results you might have missed due to pandemic, and here they are! We need more work on simulations/modeling to catch up!

- Subhalo mass function below the galaxy formation
- Properties of disrupted satellite systems
- Impact of Large Magellance Cloud
- Smallest dwarf galaxies?

## The next decade will be full of data for dark matter astrophysics!

# Subhalo mass function below the galaxy formation

## Milky Way Satellite Galaxy Discovery Timeline



## Milky Way Satellite Luminosity



Nadler et al. ApJ 893, 48 (2020)



**Observed** satellites are consistent with CDM + galaxy formation.

See also: Jethwa et al. 2018, Newton et al. 2018, Kim et al. 2018, Applebaum et al. 2020

## **Pushing to Lower Mass**



## Dark Matter Halo Mass (M<sub>☉</sub>)

# Abundan Halo Matter Dark

**Standard CDM** predicts the existence of small subhalos.

How do we detect completely dark subhalos?

## Milky Way's Stellar Streams



### Credit: Denis Erkal

a=0.50

Milky Way like galaxies are assembled by accretion and disruption of many smaller systems

### Stellar Streams:

- tidally disrupted
  - dwarf galaxies
  - globular clusters
- but not fully mixed





## NORTHERN SKY





Sloan Digital Sky Survey SDSS DR8 / Bonaca, Giguere, Geha



## Isochrones Scanning through in distance





Credit: Alex Drlica-Wagner



## Streams in the Dark Energy Survey



13 new streams from DES + 2 previous known

Shipp et al. 2018 (DES Collaboration)



## SOUTHERN SKY





Dark Energy Survey DES / Shipp, Drlica-Wagner et al. 2018





### Southern Stellar Stream Spectroscopic Survey (S<sup>5</sup>) **Key Members of S5 Team** https://s5collab.github.io/



Ting Li



**Daniel Zucker** 



Alex Ji



Sergey Koposov



**Denis Erkal** 



Yao-Yuan Mao



Sophia Lilleengen

and Joss Bland-Hawthorn, Gary Da Costa, Dougal Mackey, Zhen Wan, Eduardo Balbinot, Keith Bechtol, Vasily Belokurov, Andrew Casey, Gayandhi De Silva, Alex Drlica-Wagner, Marla Geha, Terese Hansen, Jennifer Marshall, Jeremy Mould, Sanjib Sharma, Jeffery Simpson, Josh Simon, Douglas Tucker, Kathy Vivas, Risa Wechsler, Brian Yanny and many more ...



Geraint Lewis



Kyler Kuehn



**Andrew Pace** 



Nora Shipp



Lara Cullinane



Sarah Martell



## **S<sup>5</sup>:** DES+Gaia+AAT







2-degree-Field (2df) fibre positioned





AAOmega spectrograph

The Southern Stellar Stream Spectroscopic Survey (S5): Overview, Target Selection, Data Reduction, Validation, and Early Science TSL et al. 2019, arXiv:1907.09481



### Since Summer 2018

### **Efficient Target Selection w/**

DES DR1 photometry Gaia DR2 proper motions



## Gaia EDR3 detections, [3, 12] kpc



Gaia EDR3 / Ibata et al. 2021



## **Stream Search w/ Machine Learning**

## Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning

David Shih,<sup>1</sup><sup>\*</sup> Matthew R. Buckley,<sup>1</sup> Lina Necib,<sup>2,3,4</sup> and John Tamanas<sup>5</sup> <sup>1</sup>NHETC, Dept. of Physics and Astronomy, Rutgers, Piscataway, NJ 08854, USA <sup>2</sup>Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA <sup>3</sup>Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA <sup>4</sup>Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA <sup>5</sup>Department of Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA



based on the deep learning anomaly detector ANODE 90 new streams discovered?

Shih et al. 2021, 2023





## Subhalo Mass Function with Cold Streams



Credit: Denis Erkal

Cold streams may be perturbed by subhalo flyby





## **Science with Stellar Streams**

Bonaca et al. (2019)





## **Science with Stellar Streams**

- However, de Boer et al (2019) shows that the spur might caused by an interaction with Sagittarius dwarf

![](_page_19_Figure_5.jpeg)

## Streams in the Dark Energy Survey

![](_page_20_Figure_1.jpeg)

13 new streams from DES + 2 previous known

Shipp et al. 2018 (DES Collaboration)

![](_page_20_Picture_4.jpeg)

![](_page_21_Figure_0.jpeg)

## Broken stream perturbed by dark matter subhalo?

![](_page_21_Figure_2.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_1.jpeg)

Another GD-1 like stream?

 $\Phi_2$ 

TSL et al (2021) (S<sup>5</sup> Collaboration)

## Broken stream perturbed by dark matter subhalo?

![](_page_22_Figure_5.jpeg)

## Perturbation Might Be Caused by Sagittarius Dwarf Galaxy?

Σ

ε

![](_page_23_Figure_1.jpeg)

TSL et al. (2021) (S<sup>5</sup> Collaboration)

## 2% of the realizations 17.5 17.0 16.5 -20-15 -10 10 -5 5 0 $\phi_1$ [deg]

![](_page_23_Picture_4.jpeg)

# Subhalo mass function below the galaxy formation

We are probing the sub halos below 10^8 solar mass region. But we need more modeling work to really "detect" these subhalos.

## Properties of Disrupted Satellite Systems in the Milky Way

![](_page_26_Picture_0.jpeg)

## **Orbital and Chemical Properties of Stellar Streams**

![](_page_26_Figure_2.jpeg)

S5: The Orbital and Chemical Properties of TSL et al (2022), arXiv: 2110.06950

![](_page_26_Picture_5.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_28_Figure_1.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

**S**<sup>5</sup>

### What are the Progenitors? Dwarf Galaxies or Globular Clusters?

**(5**<sup>5</sup>)

## Luminosity / Stellar Mass of the Stream Progenitors

![](_page_29_Figure_2.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

H

H

Palca 🔆 Turranburra Elqui

![](_page_29_Picture_5.jpeg)

### Luminosity / Stellar Mass of the Stream Progenitors

![](_page_30_Figure_2.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

H

H

### # of stream at > 5 x10<sup>5</sup> $M_{\odot}$ Predicted by FIRE-2 simulation

![](_page_30_Picture_5.jpeg)

| alca | ÷ | Turranburra |  |
|------|---|-------------|--|
| Iqui |   |             |  |

Panithanpaisal et al. 2021

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

![](_page_30_Picture_10.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_2.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

Η

H

## **"Too Big to Fail" in Stream?**

### # of stream at > 5 x10<sup>5</sup> $M_{\odot}$ Predicted by FIRE-2 simulation

### Only 1 stream at this mass range — Sagittarius Stream

| sim name | $m_{200\mathrm{m}} \mathrm{[M_{\odot}]}$ | $r_{200\mathrm{m}}[\mathrm{kpc}]$ | Ν      |
|----------|------------------------------------------|-----------------------------------|--------|
| m12i     | $1.18\times10^{12}$                      | 336                               | 9      |
| m12f     | $1.71\times10^{12}$                      | 380                               | 8      |
| m12m     | $1.58\times10^{12}$                      | 371                               | 8      |
| m12c     | $1.35\times10^{12}$                      | 351                               | 7      |
| m12b     | $1.43\times10^{12}$                      | 358                               | 8      |
| m12r     | $1.10\times10^{12}$                      | 321                               | 3      |
| m12w     | $1.08\times10^{12}$                      | 319                               | 3      |
| Romeo    | $1.32 	imes 10^{12}$                     | 341                               | 13[10] |
| Juliet   | $1.10\times10^{12}$                      | 321                               | 12[6]  |
| Romulus  | $2.08\times10^{12}$                      | 406                               | 9[6]   |
| Remus    | $1.22\times10^{12}$                      | 339                               | 8[5]   |
| Thelma   | $1.43\times10^{12}$                      | 358                               | 10[9]  |
| Louise   | $1.15\times10^{12}$                      | 333                               | 8 [8]  |

Palca ÷ Turranburra Elqui

Panithanpaisal et al. (2021)

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

![](_page_31_Picture_12.jpeg)

![](_page_32_Picture_0.jpeg)

## **"Too Big to Fail" in Stream?**

FIRE-2 matches with observations after detectability is taken into consideration.

![](_page_32_Figure_3.jpeg)

### Shipp et al. w/ TSL (2022) (S<sup>5</sup> & FIRE Collaboration)

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)

![](_page_33_Picture_0.jpeg)

## Is FIRE over disrupting satellites?

![](_page_33_Figure_2.jpeg)

### Shipp et al. w/ TSL (2022) (S<sup>5</sup> & FIRE Collaboration)

![](_page_33_Picture_4.jpeg)

![](_page_34_Figure_1.jpeg)

### prograde

TSL et al (2021) (S<sup>5</sup> Collaboration)

retrograde

### Prograde vs. Retrograde

## **Velocity dispersion vs pericenter**

![](_page_35_Figure_1.jpeg)

TSL et al (2021) (S<sup>5</sup> Collaboration)

![](_page_35_Picture_3.jpeg)
## Properties of Disrupted Satellite Systems in the Milky Way

We have a lot of observational data on the properties of stellar streams, e.g. orbits, and awaiting for simulations for comparison

## The Impact of Large Magellanic Cloud





# The impact of LMC — on Milky Way Halo



N. Garavito-Camargo et al., 2020





## The impact of LMC — density perturbation

C. Conroy et al. 2021



## The impact of LMC — kinematic perturbation

D. Erkal et al. 2021



# Milky Way is not in Dynamical Equilibrium!

# How about the impact on Milky Way's Companions?



RR Lyrae stars in Gaia DR2





## The impact of LMC — on Orphan-Chenab Stream

S. Koposov, V. Belokurov, TSL et al. 2019 (The OATs Collaboration)





S. Koposov, V. Belokurov, TSL et al. 2019 (The OATs Collaboration)

## The impact of LMC — on Orphan-Chenab Stream





S. Koposov, V. Belokurov, TSL et al. 2019 (The OATs Collaboration)



Credit: Denis Erkal

Milky Way + LMC t = -3.00 Gyr, r(LMC-MW) = 684.1 kpc



## The impact of LMC — on Orphan-Chenab Stream



## Orphan-Chenab Stream: fitting w/ full 6D Constraining Milky Way and LMC Potential Simultaneously



S. Koposov, D. Erkal, TSL et al. 2023 (S<sup>5</sup> Collaboration)



## **Perturbations in Energy Angular Momentum Space**





## **Perturbations in Energy Angular Momentum Space**





## **Perturbations in Energy Angular Momentum Space**







S. Koposov, D. Erkal, TSL et al. 2023 (S<sup>5</sup> Collaboration)

## Orphan-Chenab Stream: fitting w/ full 6D Constraining Milky Way and LMC Potential Simultaneously



S. Koposov, D. Erkal, TSL et al. 2023 (S<sup>5</sup> Collaboration)



## The Impact of Large Magellanic Cloud

Milky Way is not in dynamical equilibrium. One needs to be careful in computing the Milky Way mass w/ any halo tracers assuming dynamical equilibrium. We need more sims w/ LMC in!

# How about the impact on Milky Way's Satellites due to the LMC infall?

## The impact of LMC — on satellite orbits





Andrew Pace (CMU)





## Antlia 2

## Antlia 2 is under tidal stripping

## Distance: 130 kpc 10.0 Size: ah ~ 4 kpc 7.5 Pericenter: 40 kpc 5.0 Apocenter: 140 kpc 2.5 ∆ð [deg] 0.0 -2.5-5.0 -7.5-10.07.5 5.0 2.5 10.0

A. Ji, S. Koposov, TSL et al. 2021 (S<sup>5</sup> Collaboration)





## Antlia 2 is under tidal stripping



A. Ji, S. Koposov, TSL et al. 2021 (S<sup>5</sup> Collaboration)

Vivas, A. K. et al. w/ TSL (2022)



2)

## Cusp/Core w/ disrupting galaxies?



Errani, R. et al. (2015)



# MW satellite galaxies under tidal stripping





# How about the impact on Milky Way's Satellites due to the LMC infall?

# The impact of LMC — on Antlia 2

## Distance: 130 kpc 10.0 r Size: ah ~ 4 kpc 7.5 Pericenter: 40 kpc 5.0 Apocenter: 140 kpc 2.5 ∆ð [deg] 0.0 -2.5-5.0 -7.5-10.07.5 10.0

2.5

5.0

A. Ji, S. Koposov, TSL et al. 2021 (S<sup>5</sup> Collaboration)



# The impact of LMC — on Antlia 2

## Distance: 130 kpc 10.0 r Size: ah ~ 4 kpc 7.5 Pericenter: 40 kpc 5.0 Apocenter: 140 kpc 2.5 ∆ð [deg] 0.0 -2.5-5.0 -7.5-10.07.5 10.0

2.5

5.0

A. Ji, S. Koposov, TSL et al. 2021 (S<sup>5</sup> Collaboration)



# **Dwarf Galaxy Triaxility: Dark Matter or Tides?**

## Some Milky Way's Dwarf Galaxies are Elliptical



## A. Ji, S. Koposov, TSL et al. 2021 (S<sup>5</sup> Collaboration)



## Are the ellipticity all aligned with the motion?







## Reticulum II is not







## **Reticulum II is not?** — can be explained by LMC!


## **Dwarf Galaxy Triaxility: Dark Matter or Tides?**

Are dwarf galaxies elliptical because of tides?
Were they born in spherical and then get elliptical?
Were they born in elliptical and aligned due to torque?

# Smallest Galaxies or the most metal-poor globular clusters

### What about disrupted globular clusters?



TSL et al (2022), arXiv: 2110.06950



### stellar stream remnant of globular clusters (?) below the metallicity floor





#### s5collab.github.io



### What about the intact globular clusters?













#### **Dwarf Galaxy Discovery Timeline**















### Ultra faint star clusters (? maybe)



### Ultra faint star clusters (? maybe)



#### What is the Boundary? Dwarf Galaxy vs. Star Clusters



#### What is the Boundary? Dwarf Galaxy vs. Star Clusters



### Smallest Structures Probe Fundamental Characteristics of Dark Matter





#### subhalo mass function



#### **Dwarf Galaxies vs Star Clusters** via (dynamical) mass-to-light ratio

















#### What is the Boundary? Dwarf Galaxy vs. Star Clusters



#### What is the Boundary? Dwarf Galaxy vs. Star Clusters



#### Eridanus III

Mstar ~ 
$$10^3 M_{\odot}$$

*rh* = 8 *pc* 

d = 91 kpc

First discovered in the Dark Energy Survey



Bechtol et al. 2016







Conn et al. 2018





































# Smallest Galaxies or the most metal-poor globular clusters

We are finding tons of faintest systems (and compact) in the deep photometric data, and MORE are coming for the next decade? What are these?
to pandemic, and here they are! We need more work on simulations/modeling to catch up!

- There are a lot of observing results you might have missed due

The next decade will be full of data for dark matter astrophysics!

### Wide-Area Imaging



### **Spectroscopic Measurements**

## DESI — Dark Energy Spectroscopic Instrument

MWS — Milky Way Survey Co-chairs: Chris Manser (Imperial College London) Ting Li (U of Toronto)



### DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science





### DARK ENERGY SPECTROSCOPIC DESI, the instrument in a nutshell

U.S. Department of Energy Office of Science



- 4-m Mayall Telescope at **KPNO**
- 6-Len Wide-field Corrector
- 5000 Robotic Fibers
- 10 3-Channel Spectrograph







### **DARK ENERGY** SPECTROSCOPIC DESI, the instrument in a nutshell

U.S. Department of Energy Office of Science



- 4-m Mayall Telescope at **KPNO**
- 6-Len Wide-field Corrector
- 5000 Robotic Fibers
- 10 3-Channel Spectrograph
- Dec 2020 May 2021: Commissioning and Science Verification
  - Early Data Release in June 2023
- May 2021: Main Survey (5 yr)
  - Year 1: May 2021 June 2022







### DARK ENERGY SPECTROSCOPIC DESI, the instrument in a nutshell

U.S. Department of Energy Office of Science







U.S. Department of Energy Office of Science



# **10 3-channel Spectrographs**

#### Spectral Resolution: R~2500-5000











U.S. Department of Energy Office of Science



# **10 3-channel Spectrographs**









# Milky Way Survey in a nutshell

U.S. Department of Energy Office of Science



- DESI Bright Time Survey
- ~120s effective exposure time
- Goal: stars at |b|>20
  - 7M Main 16<r<19
  - 0.6M Faint
  - 6M Backup ullet

Overview of the DESI Milky Way Survey Cooper et al. 2023 arXiv:2208.08514 (DESI Collaboration et al)







# Milky Way Survey in a nutshell

U.S. Department of Energy Office of Science



- DESI Bright Time Survey
- ~120s effective exposure time
- Goal: stars at |b|>20
  - 7M Main 16<r<19
  - 0.6M Faint
  - 6M Backup  $\bullet$

 SV+Year1: >4M star w/RV<10 km/s

Overview of the DESI Milky Way Survey Cooper et al. 2023 arXiv:2208.08514 (DESI Collaboration et al)







U.S. Department of Energy Office of Science



# **DESI Stellar Spectra**

Stellar template fits to spectra w/

- RVSpecfit (S. Koposov)
- FERRE (C. Allende-Prieto)
- Radial velocity, log g,Teff, [Fe/H]

Overview of the DESI Milky Way Survey Cooper et al. 2023 arXiv:2208.08514 (DESI Collaboration et al)







# **DESI Observation on Draco** (45 min Dark Time in SV)

U.S. Department of Energy Office of Science



- Walker et al. 2015: ~500 members
- ~200 members in one DESI pointing







| Field  | $lpha_{2000}{}^a$<br>[hh:mm:ss] | $\delta_{2000}{}^{a}$ [°:':''] | UT Date<br>[dd/mm/yyyy] | HJD <sup>b</sup><br>[days] | $N_{\exp}{}^{c}$ | Exp. Time <sup>d</sup><br>[seconds] |
|--------|---------------------------------|--------------------------------|-------------------------|----------------------------|------------------|-------------------------------------|
| Dra-01 | 17:20:24.65                     | +57:53:06.9                    | 19/04/2006              | 2453844.87                 | 4                | 7200                                |
| Dra-02 | 17:23:50.00                     | +57:52:12.0                    | 25/04/2006              | 2453850.78                 | 5                | 4846                                |
| Dra-03 | 17:20:24.64                     | +57:53:06.9                    | 23/02/2007              | 2454154.98                 | 3                | 5400                                |
| Dra-04 | 17:17:37.81                     | +57:46:30.2                    | 27/02/2007              | 2454158.96                 | 3                | 5400                                |
|        |                                 |                                | 11/03/2007              | 2454170.89                 | 4                | 7200                                |
| Dra-05 | 17:20:38.90                     | +57:28:04.3                    | 03/03/2007              | 2454162.94                 | 3                | 5400                                |
|        |                                 |                                | 09/03/2007              | 2454168.90                 | 3                | 5400                                |
| Dra-06 | 17:19:23.67                     | +58:28:22.4                    | 06/03/2007              | 2454165.90                 | 3                | 5400                                |
| Dra-07 | 17:14:24.40                     | +57:28:47.6                    | 22/04/2007              | 2454212.89                 | 3                | 5400                                |
| Dra-08 | 17:26:35.35                     | +58:15:25.6                    | 23/04/2007              | 2454213.83                 | 3                | 5400                                |
| Dra-09 | 17:30:06.97                     | +57:38:24.2                    | 24/02/2008              | 2454520.94                 | 5                | 6000                                |
| Dra-10 | 17:20:25.01                     | +57:53:11.7                    | 27/02/2008              | 2454523.99                 | 3                | 3600                                |
| Dra-11 | 17:11:57.01                     | +58:18:03.1                    | 27/02/2008              | 2454523.93                 | 3                | 4500                                |
| Dra-12 | 17:10:09.01                     | +57:29:41.0                    | 20/03/2009              | 2454910.85                 | 2                | 4096                                |
|        |                                 |                                | 21/03/2009              | 2454911.86                 | 3                | 7200                                |
| Dra-13 | 17:20:06.72                     | +57:55:32.6                    | 21/03/2009              | 2454911.96                 | 2                | 4800                                |
|        |                                 |                                | 24/03/2009              | 2454914.92                 | 4                | 7200                                |
| Dra-14 | 17:41:60.00                     | +56:00:00.0                    | 23/03/2009              | 2454913.87                 | 4                | 9600                                |
| Dra-15 | 17:20:15.99                     | +57:55:30.0                    | 15/05/2010              | 2455331.74                 | 4                | 6000                                |
| Dra-16 | 17:20:15.99                     | +57:55:30.0                    | 15/05/2010              | 2455331.84                 | 3                | 4500                                |
| Dra-17 | 17:15:23.52                     | +57:55:42.0                    | 16/05/2010              | 2455332.73                 | 2                | 3600                                |
|        |                                 |                                | 16/05/2010              | 2455332.78                 | 3                | 4500                                |
| Dra-18 | 17:20:23.58                     | +58:24:30.0                    | 16/05/2010              | 2455332.85                 | 3                | 4500                                |
| Dra-19 | 17:20:11.57                     | +57:24:54.0                    | 16/05/2010              | 2455332.91                 | 3                | 4500                                |
| Dra-20 | 17:20:15.99                     | +57:55:30.0                    | 29/01/2011              | 2455590.99                 | 3                | 3600                                |
|        |                                 |                                | 25/05/2011              | 2455706.92                 | 4                | 4500                                |
| Dra-21 | 17:20:15.99                     | +57:55:30.0                    | 25/05/2011              | 2455706.77                 | 3                | 5400                                |
| Dra-22 | 17:20:15.99                     | +57:55:30.0                    | 25/05/2011              | 2455706.84                 | 3                | 5400                                |
| Dra-23 | 17:22:55.93                     | +58:02:34.0                    | 26/05/2011              | 2455707.75                 | 3                | 5400                                |
| Dra-24 | 17:17:39.05                     | +57:53:14.0                    | 26/05/2011              | 2455707.83                 | 3                | 5400                                |
| Dra-25 | 17:20:46.45                     | +57:17:29.3                    | 26/05/2011              | 2455707.91                 | 4                | 4800                                |
| Dra-26 | 17:20:00.58                     | +58:37:30.6                    | 27/05/2011              | 2455708.86                 | 3                | 5400                                |
| Dra-27 | 17:20:15.99                     | +57:55:30.0                    | 27/05/2011              | 2455708.93                 | 3                | 3600                                |
|        |                                 |                                | 31/05/2011              | 2455712.87                 | 3                | 3600                                |
| Dra-28 | 17:20:19.72                     | +57:52:21.9                    | 27/05/2011              | 2455708.76                 | 4                | 9600                                |
|        |                                 |                                | 28/05/2011              | 2455709.89                 | 3                | 6000                                |
| Dra-29 | 17:19:02.64                     | +57:22:36.0                    | 29/05/2011              | 2455710.84                 | 3                | 5400                                |
| Dra-30 | 17:22:06.84                     | +58:27:53.3                    | 29/05/2011              | 2455710.91                 | 3                | 4500                                |
| Dra-31 | 17:20:17.49                     | +57:54:42.0                    | 29/05/2011              | 2455710.76                 | 3                | 5400                                |
| Dra-32 | 17:26:54.32                     | +58:29:28.6                    | 30/05/2011              | 2455711.90                 | 3                | 5400                                |
|        |                                 |                                | 31/05/2011              | 2455712.93                 | 3                | 3600                                |
| Dra-33 | 17:14:13.51                     | +57:40:52.9                    | 31/05/2011              | 2455712.78                 | 4                | 7200                                |

#### Table 1. Log of Hectochelle Observations of Draco fields

# vation on Draco ark Time in SV)

- Walker et al. 2015: ~500 members
- ~200 members in one DESI pointing
- 45 min DESI vs 60+ hr on MMT









## Milky Way Survey Main Science Goal Probing the Dark Matter and Accretion History of the Milky Way

U.S. Department of Energy Office of Science

- The Shape and Mass of the Dark Matter Halo
- Small-scale Substructure in the Dark Matter Halo
- The Assembly History of the Milky Way Halo
- The Formation History of the Milky Way Thick Disk
- Primordial/Metal-Poor Stars in the Milky Way



Overview of the DESI Milky Way Survey Cooper et al. 2023 arXiv:2208.08514 (DESI Collaboration)





### DARK ENERGY SPECTROSCOPIC ESI's view on Andromeda and the Giant INSTRUMENT **Stellar Stream**

U.S. Department of Energy Office of Science



Credit: KPNO/NOIRLab/AURA/NSF/E. Slawik/D. de Martin/M. Zamani



Dey, Nijita, Koposov et al. 2023 arXiv:2208.11683 (DESI Collaboration)



### Wide-Area Imaging



### **Spectroscopic Measurements**