Anisotropic velocity dependent self-interactions in galaxy cluster mergers

SIDM workshop, Pollica, Italy 21.06.2023

Sabarish V. M.

sabarish.venkataramani@uni-hamburg.de

University of Hamburg

Collaborators: Marcus Brüggen, Kai-Schmidt Hoberg, Moritz Fischer, Felix Kahlhoefer

Outline 2/16

- Anisotropic / Frequent self-interactions without velocity dependence
- Velocity dependent frequent self-interactions
- Results

Strongly anisotropic cross-section

- Introduced by Kahlhoefer et al. [1308.3419], to study evaporation rate, and deceleration of subhalo falling into host.
- Features :
 - Divergent $d\sigma/d\theta$ for $\theta \rightarrow 0$
 - \circ Divergent total cross-section, $\sigma_{\mathrm{Tot}} \to \infty$
 - But $\sigma_T \propto \int d\sigma/d\theta \left(1 \cos(\theta)\right) d\theta$ is finite
- Self-interactions in frequent self-interacting dark matter (fSIDM), can be seen as drag force

$$R_{\rm dec} = \frac{\rho_2 v_0 \sigma_T}{2m_{\rm DM}}$$

 $R_{\rm dec}$ is the deceleration rate

Schematic representation

Forward small angle scatterings \Rightarrow Drag force

fSIDM in N-Body simulations

• Typical N-Body code for SIDM,

$$P_{ij} \propto \sigma_{\rm Tot} \Delta t$$

- For fSIDM, $\sigma_{\rm Tot} \rightarrow \infty$, leads to $\Delta t \rightarrow 0$
- Drag force to the rescue.
- Implementation in GADGET-3 by Fischer et. al [2012.10277]
- How does it stand against isotropic SIDM ?

Comparing $\{\sigma\}_{\mathrm{Rare}} \leftrightarrow \{\sigma\}_{\mathrm{Fre}}$

Simple case : Velocity independent $\Rightarrow \{\sigma_0/m_\chi\}$ [Fischer et. al 2109.10035]

- Frequent (Anisotropic) : σ_T
- Rare (Isotropic) : σ_{Tot} ; $\sigma_{T} = 2\sigma_{\mathrm{Tot}}$
- Matching is done by $\sigma_T(\text{Freq}) \leftrightarrow \sigma_T(\text{Rare})$

What is observed?

- Offsets grows with cross-sections
- ullet For same σ_T , fSIDM produces larger offset

- Qualitative features in velDep mergers!
- Is it possible to have observable offsets given the current bounds?
- Firstly, Cross-section parameterization [Gilman et al. 2207.13111], [Yang et al. 2205.02957]

$$\sigma_{T,m} = \sigma_{0,m} \left(1 + \frac{v^2}{w^2} \right)^{-2} \; ; \qquad w = m_{\phi} / m_{\chi}$$

- For $v \gg w$: Interaction is suppressed
- For $w \gg v$: Interaction is velocity independent

Typical velocities at first pericenter $\langle v_{12} \rangle \approx \{2000, 3000, 4000\}$ for Mergers

Method 1:

- Same $\sigma_{0,m}$ with different w's
- Compare expectations with results
- The effects of velocity dependence is easier to understand

Simulation setup:

- Mass of first halo = $10^{15} \, \mathrm{M}_{\odot}$ = Mass of second halo
- Cross-section parameters : $\sigma_{0,m} = 5.0 \, \mathrm{cm}^2 \, \mathrm{g}^{-1}$, with $w \in \{2000, 3000, 4000\} \, \mathrm{km \ s}^{-1}$
- Halos are shot at each other $1000 \, \mathrm{km s^{-1}}$
- Three components : SIDM, Galaxy, BCG

Same $\sigma_{0,m}$: DM peaks

M5R1 Main Halo DM: Peak [x]

ullet Large cross-sections \Rightarrow DM halos coalesce

Same $\sigma_{0,m}$: BCG Oscillations

• BCG oscillations have qualitative difference because, coring starts at late times for strong velocity dependent interactions

Matching at First pericenter

Method 2:

 $\sigma_{0,m}$ by matching the overall cross-section at some characteristic velocity [Robertson et. al 1612.03906]

Central Density matching

Method 3:

- Stringent bounds from core densities [Sagunski et al. 2006.12515, Andrade et al. 2012.06611]
- Simulate isolated haloes with velocity dependence that has similar central density.

Central Density matching

- Central density matching [Balberg et. al 0110561] [Yang et. al 2205.03392]
- $t_{\text{fac}} = \frac{\sigma_{0,m} \text{ (guess)}}{\sigma_{0,m} \text{ (new)}}$
- Initial guess should not be way too off

• Ballpark estimate for $\sigma_{0,m}$: solve for $\sigma_{0,m}$ in the equation $\sigma_{\rm eff} = 0.35$

$$\sigma_{\rm eff} \propto \int v^2 dv d\cos\theta v^5 \sin^2\theta \frac{d\sigma(\sigma_{0,m})}{d\cos\theta} \exp\left(-\frac{v^2}{4\sigma_{1D}^2}\right) [\text{Yang et. al 2205.03392}]$$

Central Density matching

Observed offsets for fSIDM in Simulations

$w[{ m km/s}]$	$\sigma_{0,m} \left[\mathrm{cm}^2 / \mathrm{g} \right]$	$d_{\rm DM-BCG}[{ m kpc}]$
1000	5.6	2.5 ± 2
2000	0.78	1.4 ± 1.2
3000	0.38	1.2 ± 1
4000	0.25	5 ± 2.5
∞	0.11	6.4 ± 5

Summary

Key result:

- Offsets in idealised cluster mergers are not large enough to distinguish vel.dep. SIDM from const. SIDM (at low resolution)
- Early time vs. late time BCG oscillations at least at the level of simulations is qualitatively different.

Future directions:

- Simulate different merger mass ratios
- Zoom in simulations of lower mass systems
- Are BCG oscillations in vel.dep regime a viable observable ? [Harvey et. al 1812.06981]