

Can SIDM Compete with Baryonic Effects?

Jonah Rose SIDM Conference Pollica Italy 21/06/2023

This Investigation

Most SIDM models are tested with N-body simulations, do these results hold when we include a comprehensive galaxy formation model?

N-body Results CDM ETHOS, ETHOS₃ ETHOS₄ ETHOS

- Zoom-in simulation of MW-mass galaxy and satellites
 - Initial conditions fixed for each simulation (same as Stephanie's)
 - Run with Arepo code

Vogelsberger et al. 2016

N-body Results - Central

- Isothermal and isodensity cores for the central halo
 - Cores up to 3 kpc
 - Core sizes are proportional to magnitude of SIDM cross section

N-body Results -Gravothermal Collapse?

- No gravothermal collapse
 - Cross sections are not large enough
- CDM can also not reach these densities

IllustrisTNG

j.rose@ufl.edu

MW Disks with SIDM and IllustrisTNG CDM ETHOS₁ ETHOS₂ ETHOS₃

ETHOS₄

Comparison to N-body Simulations

- Isothermal and isodensity cores for the central halo
 - Cores up to 3 kpc
 - Core sizes are proportional to magnitude of SIDM cross section

Comparison to N-body Simulations

- All galaxies are now denser with no constant-density core
- There is little variation between SIDM models

- Larger halos have higher DM densities in TNG simulations
- Increased density is from adiabatic contraction

j.rose@ufl.edu

• Adiabatic contraction also affects SIDM satellites

j.rose@ufl.edu

Adiabatic Contraction in Dwarfs

- Adiabatic contraction affects halos larger than $\sim 10^8$ stellar mass $\circ \sim 10^{10}$ halo mass
- Smaller halos remain the same as N-body simulations

Implications for SIDM

- Baryons heat the center of halos
 O Both centrals and satellites
- Can push galaxies into core collapse
 - Especially for very baryondominated galaxies, like MW

Implications for SIDM

- Central velocities are higher
 Can change SIDM cross section
- UFD cross sections are unchanged
- Classical change slightly
- MW change most

Gravothermal Collapse? (N-body)

- No gravothermal collapse
 - Cross sections are not large enough
- CDM can also not reach these densities

Gravothermal Collapse?

- Few dense halos despite isothermal cores.
 - Cross sections are too small?
- Core collapsed halos are at higher masses
- CDM also has very dense halos

Gravothermal Collapse?

- Few dense halos despite isothermal cores
 - Cross sections are too small?
- CDM also has very dense halos
 - No separation
 between CDM and
 SIDM

Satellite Cores

Conclusions

Most SIDM models are tested with N-body simulations, do these results hold when we include a comprehensive galaxy formation model?

- With IllustrisTNG and ETHOS: Yes
 - Only for galaxies with stellar mass less than $\sim 10^8 M_{\odot}$ (Halo mass $\sim 10^{10}$)

Other Results:

- Baryons heat the center of the DM halo during adiabatic contraction
 - Can create isothermal cores in larger halos (centrals and satellites)
 - Increases relative velocities for dark matter scatterings
- Low diversity in small dwarfs (UFD-classical) without large SIDM cross sections