Towards Predictive Simulations of the Smallest Stellar Systems

NGC853

Prof. Justin I. Read

Oscar Agertz, Michelle Collins, Izzy Gray, Matthew Orkney, Andrew Pontzen, Martin Rey, Stacy Kim, Ethan Taylor, Alex Goater

Dwarf galaxies

Crnojević & Mutlu-Pakdil 2021

Dwarf galaxies ... rock!

- Numbers → test DM models
- ➢ Internal dark matter distribution → test DM models
- \blacktriangleright Winds/gas content \rightarrow test galaxy form. models
- \blacktriangleright Metallicity/abundance \rightarrow test galaxy form. models

Crnojević & Mutlu-Pakdil 2021

- 1. Initial conditions from CMB + LSS
- 2. Newtonian gravity on expanding FLRW metric
- 3. (Cold) Dark Matter

- 1. Initial conditions from CMB + LSS
- 2. Newtonian gravity on expanding FLRW metric
- 3. (Cold) Dark Matter

2. Newtonian gravity on expanding FLRW metric

- 3. (Cold) Dark Matter
- 4. Gas hydrodynamic forces (Euler equations)

5. Gas cooling, star formation & "feedback" (e.g. winds, SN, radiation, BHs...)

Gas density

"Subgrid" physics

$$M_* = 1.4 \times 10^5 M_{\odot}$$

Reionisation quenched

z = 23.57

Subgrid | Stellar feedback is observed

Westmoquette et al. 2009; and see Strickland & Heckman 2009; McQuinn et al. 2018

Subgrid | Stellar feedback is observed

Collins & Read 2022

Collins & Read 2022

Westmoquette et al. 2009; and see Strickland & Heckman 2009; McQuinn et al. 2018

Image composite credit: Leisa Townsley et al. 2006

SURREY

 $\Delta x < 50
m pc$ $M_{
m res} < 1000
m M_{\odot}$

Image composite credit: Leisa Townsley et al. 2006

UNIVERSITY OF

 $\Delta x < 50
m pc$ $M_{
m res} < 1000
m M_{\odot}$ $ho_{
m th} > 100
m atoms/cc$ $T_{
m gas,min} < 100
m K$

Image composite credit: Leisa Townsley et al. 2006

 $\Delta x < 50
m pc$ $M_{
m res} < 1000
m M_{\odot}$ $ho_{
m th} > 100
m atoms/cc$ $T_{
m gas,min} < 100
m K$

Subgrid | Overcooling

e.g. Agertz et al. 2013; Dalla Vecchia & Schaye 2008

Subgrid | Overcooling

e.g. Agertz et al. 2013; Dalla Vecchia & Schaye 2008

Predictions #1. Dark matter heating

e.g. Navarro et al. 1996; Read & Gilmore 2005; Pontzen & Governato 2012; Read et al. 2016

Credit: Izzy Gray

Predictions | Dark matter heating

Read et al. 2019, De Leo et al. 2023

Predictions #2. Emergence of dwarfs & star clusters

Taylor et al. 2023 in prep.

Taylor et al. 2023 in prep.

Towards Volume and Resolution

Kim et al. 2023, in prep.

Volume & resolution: DarkLight

Kim et al. 2023, in prep.

Kim et al. 2023, in prep.

Summary

- 1. The latest high-resolution simulations of dwarf galaxies (e.g. FIRE, EDGE, Marvel, Lyra) resolve the sites of star formation & feedback. [This is a key milestone. Such simulations can be tested and calibrated against star forming regions. It is not trivial that realistic galaxies emerge from such simulations.]
- 2. The latest simulations give a remarkable match to data for nearby dwarfs. And, they make a number of *testable predictions:*
 - DM is "heated up" (most efficient for $M_{200} \sim 10^{10} M_{\odot}, \frac{M_*}{M_{200}} \sim 10^{-3}$)
 - Star clusters (no DM) dwarfs (DM) overlap at $M_V \sim [-5, -6]$ and $r_h \sim 5-30 pc$.
- Can have great resolution + great volume by combining detailed zoom simulations with semi-empirical models like DarkLight. This is key for making predictions for dwarf galaxy populations.

Justin I. Read