
Resurgent analysis of generalised Eisenstein series in string

theory
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Appearances of modular symmetry in

string theory



Introduction

Invariance under SL(2,Z) has played a central theme in string theory and

two-dimensional conformal field theory since their origins. There are (at least)

2 different ways how the modular group appears in this context:

• In string perturbation theory at genus-1 the amplitudes are modular

invariant functions, since SL(2,Z) is the mapping-class of the torus. This

leads to the introduction of Modular Graph Functions (MGFs).

• In Type IIB string theory there is a non-perturbative duality. The action of

this duality on the axio-dilaton τ is the standard action of the modular

group on the upper half-plane.

In this talk, we focus on a space of functions called generalised Eisenstein

series, which naturally appear in both contexts described above.
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4 graviton scattering in Type II theories

A central quantity we are interested in calculating within string theory is the

scattering amplitude of massless string excitations. Particularly, we look at the

amplitude of 4 gravitons. There exists a prescription for doing this in

perturbation theory by integrating over the conformal structures of genus-h

Riemann surfaces. This results in an asymptotic series

A(ϵi , ki ) ∼ κ2
10R4

∞∑
h=0

g 2h−2
s A(h)(sij) (1)

in the string coupling gs . Here κ10 is related to Newton’s gravitational constant

in 10 dimensions, R4 is a contraction of 4 linearised Riemann tensors and

sij = −α′

4
ki · kj are dimensionless Mandelstam invariants. The form of the

amplitude is largely fixed by supersymmetry.

Figure 1: Some of the worldsheet topologies that contribute to the 4-point amplitude.
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Amplitude on the torus

The genus-0 amplitude A(0)(sij) can be evaluated exactly, but on the torus, a

direct calculation is no longer possible. Instead, we may express the amplitude

as

A(1) =
π

16

∫
F

|dτ |2

Im(τ)2
B(1)(sij |τ), (2)

where F is the fundamental domain of SL(2,Z) and

B(1)(sij |τ) =
∫
Σ4

4∏
i=1

d2zi
Im(τ)

exp

{∑
i<j

sijG(zi − zj |τ)

}
, (3)

with Σ = C/(Z+ τZ) the torus and G(z |τ) the Green’s function on it. When

equation (3) is expanded in sij it tells us about the low energy behavior of the

amplitude and allows for the calculation of corrections to supergravity.
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Modular Graph Functions

In order to analyse the properties of (3), a new class of modular functions

associated with directed graphs Γ was introduced [D’Hoker, Green, Gurdogan,

Vanhove 2015]

CΓ[A](τ) =
(τ2
π

)w ∑
p1,...,pR∈Λ′

1

|p1|2a1 ...|pR |2aR

V∏
v=1

δ
( R∑

s=1

Γvsps
)
, (4)

where V is the number of vertices, R is the number of edges, Γvs is the

connectivity matrix, Λ′ = (Z+ τZ)\{0} a lattice that is summed over,

A = (a1, ..., aR) a collection of weights associated to edges and w =
∑R

i=1 ai

the total weight. The weight provides a grading on the space of MGFs and

controls the kind of interaction the graph contributes to at low energy.
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MGFs as low energy corrections

Figure 2: Organisation of MGFs by loop order and weight, the weight gives a grading

into which type of low-energy interaction the graph contributes to (from [D’Hoker,

Kaidi 2022]). 6



Two loop MGFs

At two loops every connected MGF can be written as

Ca,b,c(τ) =
(τ2
π

)w ∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)

|p1|2a|p2|2b|p3|2c
(5)

with w = a+ b + c the weight of the MGF. It is possible to show that all

two-loop MGFs are contained in a space of generalised Eisenstein series

E (λ;m, k) [Dorigoni, Kleinschmidt, Schlotterer 2021], defined by the

differential equation

(∆− λ(λ− 1))E
(
λ;m, k

∣∣τ) = Em(τ)Ek(τ) (6)

with ∆ = 4τ 2
2 ∂τ∂τ̄ , and the non-holomorphic Eisenstein given by

Es(τ = τ1 + iτ2) =
∑

(m,n) ̸=(0,0)

(τ2/π)
s

|m + nτ |2s . (7)

The weights m, k ∈ N≥2 and the corresponding total weight is given by

w = k +m. At fixed values of k,m the eigen-parameter is constrained to lie in

the bounded spectrum

λ ∈ Spec1(k,m) = {|k−m|+ 2, |k−m|+ 4, ..., k+m− 2} (8)

This space is larger than 2-loop MGFs, also including cuspidal objects. 7



Examples

Weight MGFs Eisensteins Relations

3 C1,1,1 − C1,1,1 = E3 + ζ3

4 C2,1,1 E (2; 2, 2) C2,1,1 = −E (2; 2, 2) + 9
10
E4

5 C2,2,1,

C3,1,1

E (2; 2, 3) C2,2,1 =
2
5
E5 +

ζ5
30
,

C3,1,1 = −4E (3; 2, 3) + 43
35
E5 − ζ5

60

6 C2,2,2,

C3,2,1,

C4,1,1

E (4; 2, 4),

E (4; 3, 3),

E (2; 3, 3)

C2,2,2 = − 12
5
E (2; 3, 3) + 72

5
E (4; 3, 3)− 9

7
E6,

C3,2,1 = − 2
5
E (2; 3, 3)− 18

5
E (4; 3, 3) + 11

4
E6,

C4,1,1 =
2
5
E (2; 3, 3)− 2

5
E (4; 3, 3)−6E (4; 2, 4)+ 167

126
E6

7 C3,2,2,

C3,3,1,

C4,2,1,

C5,1,1

E (5; 3, 4),

E (3; 3, 4),

E (5; 2, 5)

C3,2,2 = − 24
7
E (3; 3, 4) + 108

7
E (5; 3, 4)− 23

21
E7 +

ζ7
630

,

C3,3,1 =
24
7
E (3; 3, 4)− 108

7
E (5; 3, 4) + 32

21
E7 +

ζ7
420

,

C4,2,1 = − 24
7
E (3; 3, 4)− 18

7
E (5; 3, 4) + 16

21
E7 − ζ7

630
,

C5,1,1 = − 12
7
E (3; 3, 4)− 12

7
E (5; 3, 4)− 8E (5; 2, 5) +

661
462

E7 +
ζ7

2520
, C3,3,1 + C3,2,2 =

3
7
E7 +

ζ7
252

8 C3,3,2,

C4,2,2,

C4,3,1,

C5,2,1,

C6,1,1

E (6; 4, 4),

E (6; 3, 5),

E (6; 2, 6),

E (4; 4, 4),

E (4; 3, 5),

E (2; 4, 4)

First weight for which the space of Eisenstein series

is larger than that of MGFs
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Type IIB supergravity

At low energies, string theory reduces to a theory of supergravity. It is

described by a Lagrangian involving all of the massless fields; in particular,

gravitons are to the first approximation described by general relativity. But

there are systematic corrections encoded in additional terms [Green, Gutperle

1997; Green, Vanhove 2005]

Leff = (α′)−4g−2
s R + E 3

2
(τ)(α′)−1g

− 1
2

s R4 + E 5
2
(τ)α′g

1
2
s D4R4

− π3E
(
4;

3

2
,
3

2

∣∣τ) (α′)2gsD
6R4 + ..., (9)

In this case, we see the appearance of generalised Eisenstein series E (λ; s1, s2)

with half-integer weights s1, s2. It would be interesting to see if the spectrum

extends further, but only the first four corrections in (9) are protected by

supersymmetry.
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A second spectrum for half-integral Eisenstein series

We use the fact there is a duality between Type IIB string theory in an

AdS5 × S5 background and N = 4 super Yang-Mills theory in 4-dimensions.

Integrated correlators [Binder, Chester, Pufu, Wang 2019] give information

about the class of functions that appear in relation to higher corrections D2kR4

for k > 3. These are generalised Eisenstein series E
(
λ; s1, s2

∣∣τ) with
s1, s2 ∈ N+ 1

2
and

λ ∈ Spec2(s1, s2) := {s1 + s2 + 1, s1 + s2 + 3, ...} (10)

Figure 3: In the process of integrating, information about the observable is lost. 10



Resurgence techniques



Solving Laplace equation by using Poincaré series

We now show how resurgence framework can be used to derive results about

generalised Eisenstein series with integer weights. This is done by embedding

the series in an ambient space of functions that have asymptotic tails at the

cusp. To proceed, we remind that we want to solve the equation

(∆− λ(λ− 1))E
(
λ;m, k

∣∣τ) = Em(τ)Ek(τ) (11)

with m, k ∈ N≥2, k ≥ m and λ ∈ Spec1(k,m). We rewrite the answer using

Poincaré series

E
(
λ;m, k

∣∣τ) = ∑
γ∈B(Z)\SL(2,Z)

e(λ;m, k|γ · τ) (12)

of some periodic seed functions e(λ;m, k|τ) over the quotient of the modular

group by its Borel subgroup

B(Z) :=

{
±

(
1 n

0 1

)∣∣∣∣∣ n ∈ Z

}
⊂ SL(2,Z). (13)

The reason for doing this is the generic reduction in complexity when

comparing a modular function and its seed. For example, the seed function of

Es(τ) is proportional to τ s
2 .
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Solving a simplified equation for the seed

After folding one of the Eisenstein series, in view of the integer character of the

weights, we are left with a simpler equation for the seed function

(∆− λ(λ− 1))e(λ;m, k|τ) = (−1)k+1B2k

(2k)!
(4πτ2)

kEm(τ), (14)

where B2k are Bernoulli numbers. By Fourier expanding the Eisenstein series

and imposing appropriate boundary conditions, this is solved by

e(λ;m, k|τ) =
∑

n∈Z cn(τ2)e
2πinτ1 with c0(τ2) a polynomial and

cn(τ2) = (−1)k
2B2k

(2k)!Γ(m)
σ1−2m(|n|)|n|m−k−1

k−1∑
ℓ=k−m+1

gm,k,ℓ,λ(4π|n|τ2)ℓe−2π|n|τ2

(15)

for n ̸= 0 where gm,k,l,λ are rational numbers. This formula motivates us to

introduce a larger space of functions with asymptotic expansions as y → ∞.
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A deformation of the problem

To generate an infinite asymptotic tail, we define a new modular function

[Dorigoni, Kleinschmidt 2019]

Φ(a, b, r |τ) =
∑

γ∈B(Z)\SL(2,Z)

[∑
m ̸=0

σa(|m|)|m|bτ r
2e

−2π|m|τ2+2πimτ1
]
γ
, (16)

where σa(m) =
∑

d|m da is a divisor-sum and [...]γ indicates standard action of

γ on everything in the brackets. We find that for generic values of (a, b, r) the

asymptotic series as y := πτ2 → ∞ of the Fourier zero-mode of

Φ(a, b, r |τ) =
∑

n∈Z an(y)e
2πinτ1 is given by

a0(y) ∼ α1y
2+b−r + α2y

2+a+b−r + Iasy (a, b, r ; y), (17)

where α1, α2 are constants and the asymptotic tail is

Iasy (a, b, r ; y) =
(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b − 1)

∑
n>0

σa(n)σa+2b+2−2r (n)

∑
m≥0

Γ(m + a+ b + 1)

(4ny)m+a+b+1

Γ(2r +m − 1)Γ(1 + b +m)

Γ(m + r)Γ(m + 1)
(18)

×
[
(−1)m cos

(aπ
2

)
− cos

( (a+ 2b)π

2

)]
.
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A crash course in resurgence

In physics and mathematics, one often encounters divergent series which are

asymptotic to an answer, but don’t provide an unambiguous definition.

Resurgence is a framework of how to make sense of such series. Let

I (y) =
∑∞

n=0 any
−n−1 be a formal series of Gevrey order-1 (|an| < ABnn! for

some A,B), then define the Borel transform of this series as

B[I ](t) =
∞∑
n=0

an
tn

n!
, (19)

which converges to a holomorphic function in an open disk. To make contact

with the original series, we define a directional Laplace transform that brings us

back to the original variable

Sθ[I ](y) =

∫ e iθ∞

0

e−ytB[I ](t)dt. (20)

We have introduced an angle parameter θ, since the Borel transform has

singularities in the t plane and not every direction of integration is valid. The

newly constructed function Sθ[I ](y) has asymptotic series I (y) as y → ∞.
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Recovering non-perturbative information

Because of the presence of singularities, this procedure defines multiple possible

resummations. To (partially) remedy this shortcoming, we instead work with

transseries. Consider a very basic example with a single singularity at ω ∈ R>0.

If the singularity in the vicinity of ω is a simple pole or a logarithmic branch

cut, the function is said to be a simple resurgent function. Then define a new

formal series

Ĩ (σ, y) = I (y) + σe−ωy Iω(y), (21)

where Iω(y) is a new asymptotic series and σ is an arbitrary parameter

encoding the modified expression. As one moves across the Stokes ray θ = 0

the discontinuity in the Laplace transform is canceled by a shift in σ. More

precisely, in the case of a simple resurgent function, the discontinuity takes the

form of an exponentially suppressed function

lim
ϵ→0+

(
Sϵ − S−ϵ

)
[I ](y) = −ie−ωyS0[Iω](y). (22)

Then a shift Im(σ) → Im(σ) + 1, as you move from below to above the real

axis, would cancel the discontinuity.
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Median resummation

In a physics context, we are usually interested in observables that are real and

the generalised Eisenstein series are also real analytic. A natural way how to

resum the asymptotic series associated with such an observable is median

resummation

Smed [I ](y) = lim
ϵ→0+

Sϵ[I ](y) +
i

2
e−ωyS0[Iω](y)

= lim
ϵ→0−

Sϵ[I ](y)−
i

2
e−ωyS0[Iω](y) (23)

Figure 4: In order to resum a divergent series, we need to consider the discontinuity

along a Stokes ray.
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Resumming of Iasy (a, b, r ; y)

Since Iasy (a, b, r ; y) is a factorially divergent series, we compute the Borel

transform in the variable 4ny , which is given by [Dorigoni, Kleinschmidt, RT

2022]

B(t) = ta+b
[
2F1(2r−1, 1+b; r |−t) cos

(aπ
2

)
−2F1(2r−1, 1+b; r |t) cos

( (a+ 2b)π

2

)]
,

(24)

so that the directional Laplace transform is calculated by

Sθ

[
Iasy (a, b, r ; y)

]
=

(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b − 1)

Γ(2r − 1)Γ(1 + b)

Γ(r)∑
n>0

σa(n)σa+2b+2−2r (n)

∫ e iθ∞

0

e−4nytB(t)dt . (25)

Observe this has branch point singularities at t = 1,−1, but we only pick up

the non-perturbative terms from the singularity at t = 1, since we expect these

contributions to be exponentially suppressed and are interested in y > 0.
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The Cheshire cat resurges

From the discussion before, we know that the discontinuity across arg (t) = 0

will capture exponentially suppressed terms in y . Since the discontinuity of the

hypergeometric function is well known, we employ median resummation to find

that the exact asymptotics of the Fourier zero-mode is given by

a0(y) ∼ α1y
2+b−r + α2y

2+a+b−r + Iasy (a, b, r ; y) + NP(a, b, r ; y), (26)

where

NP(a, b, r ; y) = − (4y)2+a+b−rπ2r−a−2b−1

2a+2bΓ(r)ζ(2r − a− 2b − 1)

∑
n>0

σa(n)σa+2b+2−2r (n)e
−4ny

×
∫ ∞

0

e−4nyt(t + 1)a+bt−r−b
2F̃1(1− r , r − b − 1; 1− r − b| − t)dt .

(27)

In this equation 2F̃1(a, b; c|z) = 2F1(a, b; c|z)/Γ(c) denotes the regularised

hypergeometric function. When the parameters (a, b, r) are set to special

values, both the perturbative tail Iasy (a, b, r), as well as the non-perturbative

terms NP(a, b, r) truncate to Laurent polynomials. The resurgent structure has

disappeared, nevertheless leaving behind the exact answer.
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Some examples

Let f0(λ;m, k|y) be the Fourier zero-mode of E
(
λ;m, k

∣∣τ). Then
f0(2; 2, 2|y) =

y 4

20250
− yζ3

45
− 5ζ5

12y
+

ζ23
4y 2

+
∞∑
n=1

e−4nyσ−3(n)
2

2y 2
, (28)

f0(3; 2, 3|y) =
y 5

297675
− y 2ζ3

1890
− ζ5

360
− 7ζ7

64y 2
+

ζ3ζ5
8y 3

+ (29)

∞∑
n=1

e−4nyσ−5(n)σ−3(n)
[ 1

4y 3
+

n

4y 2

]
,

f0(5; 3, 4|y) =
y 7

49116375
− y 2ζ5

113400
− ζ7

15120
− 77ζ11

4608y 4
+

3ζ5ζ7
64y 5

+
∞∑
n=1

e−4nyσ−7(n)σ−5(n)
[ 3

32y 5
+

37n

192y 4
+

7n2

48y 3
+

n3

24y 2

]
.

(30)
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Small y limit

Lemma. If F(τ) is an invariant function on the upper half-plane such that at

the cusp y → ∞ it satisfies the growth condition F(τ) = O(y s) with s > 1,

then each of its Fourier modes Fn(y) =
∫ 1

0
F(τ1 + iy/π)e−2πinτ1dτ1 satisfies the

bound Fn(y) = O(y 1−s) in the limit y → 0 [Green, Miller, Vanhove 2015].

It’s not obvious that the examples given before satisfy this bound, hence we

need to analyse the small y behaviour of the non-perturbative terms. To do

this introduce a function

Da,b;c(y) =
∞∑
n=1

σa(n)σb(n)

nc
e−ny , (31)

which can be rewritten in a way that allows for the evaluation of its

asymptotics by using a Mellin transform

Da,b;c(y) =
1

2πi

∫ t1+i∞

t1−i∞

Γ(t)ζ(t + c)ζ(t + c − a)ζ(t + c − b)ζ(t + c − a− b)

ζ(2t + 2c − a− b)
y−tdt,

(32)

for an arbitrary t1 to the right of all the singularities.
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Cancellations in the small y limit

We find that for all the Eisenstein series

with integer coefficients, there is perfect

cancellation between the non-perturbative

terms and the Laurent polynomial in the

limit y → 0. For example, in the case

λ = 3,m = 2, k = 3 we have

NP(3; 2, 3|y) ∼ 11ζ9
128y 4

− P(3; 2, 3|y)− ζ23
42y

− ζ7y
3

3240ζ5
+

ζ3ζ5y
4

23625ζ7
+
∑
ρn

βny
3
4
+i ρn

2 ,

(33)

where NP denotes the non-perturbative

part, P the Laurent polynomial and the sum

is over all the non-trivial zeros of the zeta

function 1
2
+ iρn (with βn just constants). Figure 5: Singularity structure of (32).

Poles in purple are from Γ function, in

green from ζ functions in the

numerator, and in black from ζ

function in the denominator. 23



Non trivial zeros of zeta function

A curious observation is the presence of the non-trivial zeros of the zeta

function in the limit y → 0 of the generalised Eisenstein series. These have a

clear manifestation numerically, yet are somewhat odd in the context of

corrections to supergravity.

Figure 6: A graph showing the behaviour associated with y → 0 limit of the Fourier

zero-mode of E (3; 3, 2) coming from the non-trivial zeros.
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A unified framework to study both

spectra



Definition

We are interested in describing generalised Eisenstein series with both integer,

as well as the half-integer weights, but the class of functions studied in the

previous section is not appropriate for the latter. To understand how to

proceed, remember the Fourier series

Es(τ) =
2ζ(2s)

πs
τ s
2+

2ξ(2s − 1)

Γ(s)
τ 1−s
2 +

4

Γ(s)

∑
m ̸=0

|m|s−
1
2 σ1−2s(|m|)τ

1
2
2 Ks− 1

2
(2π|m|τ2)e2πimτ1 .

(34)

In order to view both spectra in a unified framework, we need to extend the

space of functions to an even larger one, hence we look at

Υ (a, b, r , s|τ) =
∑

γ∈B(Z)\SL(2,Z)

∑
m ̸=0

[
σa(|m|)|m|bτ r

2Ks(2π|m|τ2)e2πimτ1
]
γ
. (35)

The series converges absolutely if

min (Re(r − s),Re(r + s),Re(r − b − 1),Re(r − a− b − 1)) > 1 . (36)
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Algebraic and differential identities

Some simple relations follow instantly from the definition of the seed functions

Υ (a, b, r , s) = Υ (a, b, r ,−s) (37)

Υ (a, b, r , s) = Υ (−a, b + a, r , s) . (38)

By using standard properties of the Bessel function, one can also derive a

recursion relation for the modular functions

Υ (a, b, r , s + 1)−Υ(a, b, r , s − 1) =
s

π
Υ(a, b − 1, r − 1, s) . (39)

Additionally, we also have an action for the Laplace operator with a fixed

eigenvalue[
∆−(r+s)(r+s−1)

]
Υ(a, b, r , s) = 2π(1−2r)Υ (a, b + 1, r + 1, s + 1) . (40)

An application of these identities will allow us to construct a tower of solutions

to inhomogeneous the Laplace equation.
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Some functions that lie in this space

• Since for r = 1
2
the function Υ

(
a, b, 1

2
, s
)
is annihilated by ∆− (s2 − 1

4
)

and it has polynomial growth at cusp, it must be proportional to Es+ 1
2
(τ).

In fact, one can show

Υ

(
a, b,

1

2
, s|τ

)
= −π2 csc (πs)ζ(−b − s)ζ(−a− b − s)ζ(s − b)ζ(s − a− b)

2sΓ( 1
2
− s)ζ(−a− 2b)ζ(1− 2s)ζ(2s + 1)

Es+ 1
2
(τ).

(41)

• Products of two Eisenstein series are also in this space of functions, since

Poincaré expanding one and Fourier expanding the other gives precisely a

function of this kind

Es1(τ)Es2(τ) =
8ξ(2s1)

Γ(s1)Γ(s2)
Υ

(
1− 2s2, s2 −

1

2
, s1 +

1

2
, s2 −

1

2
|τ
)

(42)

+
2Γ(s1 + s2)ξ(2s1)ξ(2s2)

Γ(s1)Γ(s2)ξ(2(s1 + s2))
Es1+s2(τ) +

2Γ(1 + s1 − s2)ξ(2s1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(1 + s1 − s2))
E1+s1−s2(τ) ,

• In view of the differential and algebraic identities noted before, many

generalised Eisenstein series must also be present. We will see that the

spectra we are interested in fall precisely in this category.
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A formula for the Fourier zero-mode

In the case of absolute convergence, the Fourier zero-mode can be derived in

terms of a contour integral

Υ0(a, b, r , s|τ2) =
1

2πi

∫ 1
2
+i∞

1
2
−i∞

U(a, b, r , s|t)τ t
2dt, (43)

where the integrand is given by

U(a, b, r , s|t) :=
π

1
2
−rΓ
(
r−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s−1

2

)
Γ
(
t+r+s−1

2

)
2Γ(r − 1

2
)ξ(2− 2t)

× ζ(r − b − t)ζ(r − a− b − t)ζ(t + r − b − 1)ζ(t + r − a− b − 1)

ζ(2r − a− 2b − 1)
. (44)

This can be shown either by starting with the general Formula for the Fourier

modes of a function from its seed, or by computing the spectral overlap of this

function with Eisenstein series.
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Singularity structure of the integrand

Figure 7: Singularity structure of U(a, b, r , s|t) with poles in purple from Γ functions,

poles in green from ζ functions in numerator and poles in black from ζ function in

denominator.
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Two linear operators

Our original interest in this space of functions came from a desire to

algorithmically construct Poincaré series expressions of generalised Eisenstein

series. We now introduce the machinery to do this. To aid with this goal, we

define two linear operators that act on this space of functions

DΥ(a, b, r , s) = Υ (a, b, r , s − 2) +
s − 1

π
Υ(a, b − 1, r − 1, s − 1) , (45)

which in view of equation (39) satisfies DΥ(a, b, r , s|τ) = Υ (a, b, r , s|τ). If we
apply this operator n times, the result is a sum of n + 1 terms

DnΥ(a, b, r , s) =
n∑

k=0

(
n

k

)( k−1∏
i=0

s + i − n

π

)
Υ(a, b − k, r − k, s + k − 2n) .

(46)

The second operator we introduce is

T Υ(a, b, r , s) =
Υ (a, b − 1, r − 1, s − 1)

2π(3− 2r)
, (47)

and in view of (40) it satisfies

(∆− (r + s − 2)(r + s − 3))T Υ(a, b, r , s|τ) = Υ (a, b, r , s|τ) . (48)
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A tower of differential equations

Using the two operators we defined before, we now construct a tower of

differential equations. The top element is defined by a source function

Υ (a, b, r , s) and a maximal eigenvalue λmax = r + s − 2. The rest of the tower

is constructed through repeated application of the first operator

(∆− λn(λn − 1))T ◦ DnΥ(a, b, r , s|τ) = Υ (a, b, r , s|τ) , (49)

where λn = λmax − 2n.

Figure 8: A graphical depiction of the recursion process.
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Some examples

Both spectra Spec1(s1, s2) and Spec2(s1, s2) may be constructed this way by

starting with an appropriate initial representative Υ (a, b, r , s|τ), corresponding
to Es1(τ)Es2(τ). Some examples are

E
(
3; 2, 3

∣∣τ) = − π2

945
Υ

(
−3,

1

2
,
5

2
,
1

2
|τ
)
+

11

70
E5(τ)−

ζ3
42

E2(τ) (50)

in the integer case, and

E
(
7;

3

2
,
5

2

∣∣τ) = − 16

15π2
Υ(−4, 0,−2,−4|τ) + 16

27π
Υ(−4, 1,−1,−5|τ) (51)

− 8π4

10935ζ5
E3(τ)−

3ζ5
2π4

E2(τ)−
4096π12

46414974375ζ13
E7(τ) (52)

in the half-integer case.
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Conclusions

• We have seen how resurgence techniques can be applied in a modular

context as a tool of recunstructing exponentially suppressed contributions

at the cusp.

• In string theory two different spectra of generalised Eisenstein series

naturally appear - they are related to both perturbative, as well as

non-perturbative effects.

• We provide a natural construction in terms of Poincaré series for these

spectra. This is done by studying a space of modular functions which

satisfy a tower of differential and algebraic identities. Additionally, the

Fourier zero-mode can of these functions can be calculated exactly.
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