Gauge-String Duality and Arithmetic?

Rajesh Gopakumar, ICTS-TIFR, Bengaluru, "Connections between Number Theory and Physics", Pollica, Fun. 7 th.

Based on works with:
M. Gaberdiel, E. Mazenc, L. Eberhardt,
P. Maity, B. Knighton,

In Outline

-What is gauge-string duality? Why deriving it is important (even for physicists!).

- Sketch of a Program ("I'Esquisse d'un Programme"): From worldlines to worldsheets.
- Illustrating the general idea:

1) The Simplest Gauge-String Duality (large N Matrix Integrals and Top. Strings).
2) $A d S_{3} / C F T_{2}$ Duality [cf. Matthias' talk]

- Why Arithmetic Riemann Surfaces might have a special role to play.

Gauge-String Duality

- A broader term than the AdS/CFT Correspondence. Originates in 't Hooft's large N limit of $\mathrm{U}(\mathrm{N})$ gauge theories ('74)

- Feynman diagrams \rightarrow Ribbon Graphs. Associate a topology to the graph, weight $N^{2-2 g}$.
- Reminiscent of a perturbative string expansion (with $g_{s}^{2} \sim \frac{1}{N^{2}}$).
- Relates Strings to Fields (cf. Langlands).
 till the AdS / CFT Duality [Maldacena'97].

Deriving Gauge-String Duality

-How exactly do large N QFTs reorganise themselves into theories of strings?

- D-brane physics indicates open-closed string duality as an underlying reason.
* Can we turn this into a precise recipe which enables one to derive the string dual to QCD?
- Large N Gauge theory Feynman diagrams are open string diagrams.
- Holes close up (and deform the background).
- But difficult to see this explicitly happen at large $g_{s} N=\lambda$.

The Other Lamp Post

Focus on the corner where we understand the QFT but not necessarily the bulk.

- Free (perturbative) QFT as $\lambda \rightarrow 0 \leftrightarrow$
'Tensionless' limit of dual string theory.
[Sundborg, Sezgin-Sundell, Witten...
- Finite \# of Feynman diagrams, of any genus. Power series in λ given by Wick contractions.
- Test Cases:
a) Matrix Model \leftrightarrow Top. A/B-Model String.
b) $\left(T^{4}\right)^{N} / S_{N} \leftrightarrow A d S_{3} \times S^{3} \times T^{4}$.
c) Pert. $\mathcal{N}=4 \mathrm{SYM} \leftrightarrow A d S_{5} \times S^{5}$.

From Worldlines to Worldsheets

SLOGAN: EACH FEYNMAN GRAPH $\leftrightarrow A$ CLOSED WORLDSHEET.

Moduli space
Exploits the Strebel parametrisation of $\mathscr{M}_{g, n}$ [R.G.'05].
A refinement of 't Hooft's idea of associating a genus to double line Feynman graphs [R.G. '04].

Bridge from Fields to Strings

- Explain how individual Feynman diagrams translate to specific world sheets - points on $\mathscr{M}_{g, n}$.
- Pattern seen in our test cases: Matrix Models, Free Symmetric Product Orbifold CFT (and very likely, Perturbative Yang-Mills).
- Feyn. Diags. \leftrightarrow Permutations \leftrightarrow Branched Coverings \leftrightarrow Special points on $\mathscr{M}_{g, n}$ (often arithmetic).
- Matches with worldsheet amplitude - delta functions on $\mathscr{M}_{g, n}$. Weight also seems to be the natural geometric one (Nambu-Goto).

Feynman diagrams \leftrightarrow Permutations

- Feynman diagrams for a correlator enumerate Wick contractions. View in terms of counting permutations. Equivalent to Grothendieck's Dessins.
- Matrix Model: $N^{n}\left\langle\prod_{i=1}^{n} \operatorname{Tr} M^{k_{i}}\right\rangle_{\text {conn }}^{(g)}=N^{2-2 g} \sum_{\alpha \in S_{1}} \delta(1, \alpha \cdot \beta \cdot \gamma) 1$. α, β, γ are conjugacy classes in $S_{k},\left(k=\sum k_{i}\right)$
- $\quad \beta$ indicates the cyclic structure of edges around each vertex $\left(k_{1}\right) \ldots\left(k_{n}\right)$;
- $\alpha \in(2)^{k / 2}$ labels different Wick contractions of edges;

- $\gamma=\beta^{-1} \alpha^{-1}$ labels edges around a face.
- Symm. Orbfld. CFT: $\left\langle\prod_{i=1}^{n} \sigma_{k_{i}}\left(x_{i}\right)\right\rangle_{\text {conn }}^{(g)}$ labelled by n distinct single cycles $\left(k_{i}\right)$. Correlator is a sum over permutations that sew together these cycles.

Permutations \leftrightarrow Branched Coverings

- Enumerating such permutations is the same as counting branched covers.
- Each permutation in a conjugacy class associated to a branch point with definite ramification (cycle structure).
- For Matrix correlators, (α, β, γ) associated with three branch points of Σ_{g} over $\mathbb{P}^{1}(\alpha \cdot \beta \cdot \gamma=1)$.
- 'Belyi maps' - only admissible at arithmetic points

[A contribution to $\left\langle\operatorname{Tr} M^{2}\left(\operatorname{Tr} M^{3}\right)^{2}\right\rangle$] on $\mathcal{M}_{g, n}$.

Permutations \leftrightarrow Branched Coverings

- This connection also underlies the Lunin-Mathur computation of symm. orbfld. CFT correlators.
- Lift to covering space geometrises permutations.
- x_{i}-dependence of correlators now means n points $\mathrm{w} /$ branching k_{i}.
- Admissible only at discrete points on $\mathscr{M}_{g, n}$

[A contribution to $\left\langle\sigma_{3}\left(x_{1}\right) \sigma_{2}\left(x_{2}\right) \sigma_{3}\left(x_{3}\right) \sigma_{3}\left(x_{4}\right) \ldots\right\rangle$] (depend on x_{i}).

Feynman diagrams \leftrightarrow Branched Covers

- Feynman diagrams directly pictured as covering space worldsheets pulled back from target space.
[cf. Pakman, Rastelli, Razamat]
- 1-1 correspondence between branched covers and distinct Feynman diagrams.

The Strebel Construction

- The point on $\mathscr{M}_{g, n}$ associated to a Feynman diagram given by an explicit gluing construction of strips - string bit worldsheets.
- Relies on the parametrisation of $M_{g, n}$ by a unique
 quadratic (Strebel) differential $\phi_{S}(z) d z^{2}$. Has n double poles at marked points.
- It's 'horizontal trajectories' - $\phi_{S}(z(t))\left(\frac{d z(t)}{d t}\right)^{2}>0$ - foliate $\Sigma_{g, n}$ into n disk faces each with pole at $z_{i j}$ separated by a critical graph. Vertices of this Strebel graph are zeroes a_{m} of ϕ_{S}.

Real Strebel lengths $l_{k m}=\int_{a_{k}}^{a_{m}} \sqrt{\phi_{S}(z)} d z$ and critical graph topology parametrises $\mathscr{M}_{g, n}$.

Strebel Construction (Contd.)

- 'Vertical trajectories' $-\phi_{S}(z(t))\left(\frac{d z(t)}{d t}\right)^{2}<0$, begin and end on poles z_{i}. Generates strips, glued at centres of faces (poles) and vertices of Strebel graph (zeroes) correspond to Feynman propagators.
- Feynman graph of corresponding worldsheet is dual to the Strebel graph. [Strebel graph another open string description - Triality!]
- Integer Strebel lengths (\# of wick contractions in matrix model) \leftrightarrow arithmetic points on $\mathscr{M}_{g, n}$. [Mulase-Penkava, Razamat, R.G.]
- Gross-Mende like limit $\left(k_{i} \rightarrow \infty\right)$ in symm. orbfld. Also picks out the same arithmetic points. [Gaberdiel-R.G.-Knighton-Maity]
- Nambu-Goto weight in `Strebel gauge' $e^{-\int_{\Sigma} d^{2} z\left|\phi_{S}(z)\right|}$ gives right Liouville weight in this limit. $\phi_{S}(z) \approx S[\Gamma(z)]$ - Schwarzian.

Open-Closed Triptych

1) Ribbon Graphs
2) Glued up Strips
3) Strebel Surface

Bridge from Strings to Fields

- This picture of large N Feynman diagrams strikingly predicts that the dual worldsheet amplitudes should have (a presentation with) δ-function support on points of $\mathscr{M}_{g, n}$.
- Realised precisely in tensionless worldsheet theory of $\operatorname{AdS} S_{3} \times S^{3} \times T^{4}$. [Eberhardt-Gaberdiel-R.G.]
- Correlators of $\mathfrak{l l}(2, \mathbb{R})_{1}$ spectrally flowed representations $\mathscr{V}_{j=1 / 2}^{k_{i}}\left(x_{i}, z_{i}\right)$ are zero unless there exists $x=\Gamma(z)$ s.t. $x \approx x_{i}+\left(z-z_{i}\right)^{k}+\ldots$ in the vicinity of each z_{i}.
- The δ-fn. behaviour transparent in a twistorial free field description of worldsheet.
[Dei-Gaberdiel-R.G.-Knighton]
- Liouville weight associated with the non-zero points also matches with Lunin-Mathur computation.

Belyi Maps from Strings

- Dual to the Hermitian Matrix model proposed [R.G.-Mazenc '22]: A-model Topological String theory on Kazama-Suzuki coset $\mathfrak{s l}(2, \mathbb{R})_{1} / \mathfrak{u}(1)$ (with momentum deformation).
- Physical cohomology given by operators $\mathscr{Y}_{j=1 / 2}^{\left(k_{i}\right)}\left(z_{i}\right)$ in $\mathfrak{l l}(2, \mathbb{R})_{1}$ spectrally flowed representations - exactly like in the $A d S_{3}$ case. [Mukhi-Vafa-Frenkel; Ashok-Murthy-Troost]
- Ward Identity arguments again imply δ-fn. support on covering maps. But now no x_{i} dependence. All $\mathscr{Y}_{j=1 / 2}^{\left(k_{i}\right)}\left(z_{i}\right)$ mapped to ∞ on target space cigar. Branching $\left(k_{1}\right) \ldots\left(k_{n}\right) \rightarrow \beta$.
- Need $\left(k=\sum_{i} k_{i}\right) / 2$ momentum (2) insertions for mom. conservation. Branching $(2)^{k / 2} \rightarrow \alpha$.
- Together with permutation γ, structure exactly that of Belyi maps.

Questions, Questions

- Are Arithmetic Riemann Surfaces universal saddle points (a la Gross-Mende) for tensionless strings (e.g. on AdS)?
- Is there a mathematically natural sense in which one might localise (in the spirit of Atiyah-Bott) to arithmetic Riemann surfaces? "Arithmetic Localisation"
- Can such a localisation be realised physically by a special class of topological strings?
- Would the topological string description help you to better understand $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and its representations? The String dual to Dessins d'Enfants.

Thanks for your attention

