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In Outline

What is gauge-string duality?                                                                                        
Why deriving it is important (even for physicists!). 

Sketch of a Program (``l’Esquisse d’un Programme”):                                                 
From worldlines to worldsheets.

Illustrating the general idea:                                                                                                  
1) The Simplest Gauge-String Duality (large N Matrix Integrals and Top. Strings).                                                                                
2)  Duality [cf. Matthias’ talk] 

Why Arithmetic Riemann Surfaces might have a special role to play.

AdS3/CFT2



Gauge-String Duality
A broader term than the AdS/CFT Correspondence. Originates in ’t Hooft’s large N limit of U(N) 
gauge theories (’74)   

Feynman diagrams Ribbon Graphs. Associate a topology to the graph, weight . 

Reminiscent of a perturbative                                                                                                                                     

string expansion (with ).

Relates Strings to Fields (cf. Langlands).

Remained a suggestive picture                                                                                                                               
till the AdS/CFT Duality [Maldacena’97]. 
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Deriving Gauge-String Duality
How exactly do large N QFTs reorganise themselves into theories of strings? 

D-brane physics indicates open-closed string duality as an underlying reason. 

Can we turn this into a precise recipe which enables one to derive the string dual to QCD? 

Large N Gauge theory Feynman 
diagrams are open string diagrams.

Holes close up (and deform the 
background).

But difficult to see this explicitly 
happen at large .   gsN = λ
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The Other Lamp Post

Focus on the corner where we understand the QFT 
but not necessarily the bulk. 

Free (perturbative) QFT as                       
`Tensionless’ limit of dual string theory.

Finite # of Feynman diagrams, of any genus. Power 
series in  given by Wick contractions.

Test Cases:                                                                       
a) Matrix Model   Top. A/B-Model String.            
b) .                                     
c) Pert.  SYM .

λ → 0 ↔

λ

↔
(T4)N /SN ↔ AdS3 × S3 × T4

& = 4 ↔ AdS5 × S5

Quantum string theory

Perturbative

QFT

Classical

gravity
Planar limit

1

N
gs

� ⇠ RAdS/ls
� ! 0 RAdS/ls ! 1

Figure 1. The lamp post figure

P
holes

=

Figure 2. Open-closed string duality

1

[Sundborg, Sezgin-Sundell, Witten…]



From Worldlines to Worldsheets

SLOGAN: EACH FEYNMAN GRAPH
 A CLOSED WORLDSHEET. ↔

Implementation of 
open-closed string duality.

Exploits the Strebel parametrisation of  [R.G.’05].ℳg,n

Moduli space

A refinement of ’t Hooft’s idea of associating a genus to double line Feynman graphs [R.G. ’04]. 



Bridge from Fields to Strings

Explain how individual Feynman diagrams translate to specific world 
sheets - points on . 

Pattern seen in our test cases: Matrix Models, Free Symmetric Product 
Orbifold CFT (and very likely, Perturbative Yang-Mills). 

Feyn. Diags.  Permutations  Branched Coverings  Special points on 
 (often arithmetic). 

Matches with worldsheet amplitude -  delta functions on . Weight also 
seems to be the natural geometric one (Nambu-Goto).  

ℳg,n

↔ ↔ ↔
ℳg,n

ℳg,n



Feynman diagrams  Permutations↔
Feynman diagrams for a correlator enumerate Wick contractions. View in terms of 
counting permutations. Equivalent to Grothendieck’s Dessins.

Matrix Model: .        

•  indicates the cyclic structure of edges around each vertex ; 

•  labels different Wick contractions of edges; 

•  labels edges around a face. 

Symm. Orbfld. CFT:  labelled by  distinct single cycles . Correlator is a sum over 

permutations that sew together these cycles.

Nn⟨
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TrMki⟩(g)
conn = N2−2g ∑

α∈Sk
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 are conjugacy classes in α, β, γ Sk, (k = ∑ ki)

[Itzykson et.al., de Mello Koch-Ramgoolam]



Permutations  Branched Coverings↔
Enumerating such permutations is the same as 
counting branched covers.

Each permutation in a conjugacy class associated to 
a branch point with definite ramification (cycle 
structure). 

For Matrix correlators,  associated with three 
branch points of   over  ( ). 

`Belyi maps’ - only admissible at arithmetic points 
on . 

(α, β, γ)
Σg ℙ1 α ⋅ β ⋅ γ = 1

ℳg,n

[A contribution to ]⟨TrM2 (TrM3)2⟩



Permutations  Branched Coverings↔

This connection also underlies the Lunin-Mathur 
computation of symm. orbfld. CFT correlators.

Lift to covering space geometrises permutations.

-dependence of correlators now means  points 
w/ branching .

 Admissible only at discrete points on  

(depend on ).  

xi n
ki

ℳg,n
xi

[A contribution to ]⟨σ3(x1)σ2(x2)σ3(x3)σ3(x4) . . . ⟩



Feynman diagrams  Branched Covers↔

Feynman diagrams directly pictured as covering 
space worldsheets pulled back from target space.

1-1 correspondence between branched covers 
and distinct Feynman diagrams.

Matrix Model Symmetric Orbifold CFT

[cf. Pakman, Rastelli, Razamat]



The Strebel Construction

The point  on  associated to a Feynman 

diagram given by an explicit gluing construction of 
strips - string bit worldsheets. 

Relies on the parametrisation of   by a unique 

quadratic (Strebel)  differential . 

ℳg,n

ℳg,n
ϕS(z)dz2

Figure 17: Global structure of the trajectories: (Left:) In dotted red lines are the compact horizontal trajectories
encircling each double-pole. They define open disc regions around each marked point, whose closure gives the critical
graph of the Strebel differential. Blue dashed lines are vertical trajectories connecting poles. The thick dashed lines
are special vertical trajectories connecting zeroes and poles. (Right:) Zooming in on a part of the worldsheet, we see
how the overlapping regions reflecting how the local behaviour near regular points, poles and zeroes are connected.

Pictorially, one ’grows’ the punctures (double poles) into bigger and bigger holes, chewing away at the
worldsheet until we are left just with a skeletal version of the surface. More precisely, the compact horizontal
trajectories encircling each double pole define the open disc regions around each marked point. Their closure
is given by the set of non-compact horizontal trajectories connecting two zeroes of the Strebel differential.
The union of these non-compact horizontal trajectories define what is known as the critical (or Strebel) graph
of the differential. This defines a ribbon graph on the Riemann surface. See Fig. 17.

Each m-th order zero corresponds to a vertex of valency (m + 2) on this graph. Thus generically this
Strebel graph has cubic vertices (simple zeroes). We can assign a length to (‘metrize’) each edge connecting
vertices i and j,

lij =

Z Vj

Vi

p
�(z)dz, (54)

which is indeed real, because we are integrating along the horizontal trajectory connecting the two vertices,
and can be taken (by suitable orientation) to be positive. Each face of the graph contains exactly one marked
point or double pole. Since the proper length of each circular horizontal trajectory encircling that k-th
double-pole is given by Lk, we know that the sum of the lengths of the edges bounding the k-th face must
also satisfy X

(ij) around face k

lij = Lk. (55)

Variations of the edge lengths lij at fixed Lk 2 Rn
+ are therefore variations of the Riemann surface’s moduli.

They move us within the Mg,n of the total Mg,n ⇥ Rn
+ isomorphic to the set of all metric ribbon graphs of

genus g and n faces. In fact, Kontsevich showed how to translate between the flat measure
Q

e2edges dle and
a natural volume form on Mg,n ⇥ Rn

+. While we refer the reader to [54] for details, we can make a quick
dimension counting argument as a sanity check. Mg,n is not quite a manifold, and instead consists of pieces
of different dimension. The top-dimensional component has real dimension (6g�6+2n). On the other hand,
the generic Strebel graph will be trivalent, since zeroes of the differential will usually be simple15. From

15Higher order vertices arise only when some of the Strebel lengths lij go to zero i.e. when zeroes coalesce and are thus of

28

It’s `horizontal trajectories’ -  - foliate  into  disk faces each with pole 

at , separated by a critical graph. Vertices of this Strebel graph are zeroes  of . 

Real Strebel lengths    and critical graph topology parametrises  . 

ϕS(z(t))( dz(t)
dt )

2
> 0 Σg,n n

zi am ϕS

lkm = ∫
am

ak

ϕS(z)dz ℳg,n

Has  double poles at marked points.n



Strebel Construction (Contd.)
`Vertical trajectories’ - , begin and end on poles . 

Generates strips, glued at centres of faces (poles) and vertices of 
Strebel graph (zeroes) correspond to Feynman propagators. 

Feynman graph of corresponding worldsheet is dual to the Strebel 
graph. [Strebel graph another open string description - Triality!] 

Integer Strebel lengths (# of wick contractions in matrix model)  
arithmetic points on .  [Mulase-Penkava, Razamat, R.G.]

Gross-Mende like limit ( ) in symm. orbfld. Also picks out 
the same arithmetic points. 

Nambu-Goto weight in `Strebel gauge’  gives right  
Liouville weight in this limit.  - Schwarzian. 

ϕS(z(t))( dz(t)
dt )

2
< 0 zi

↔
ℳg,n

ki → ∞

e− ∫Σ d2z|ϕS(z)|

ϕS(z) ≈ S[Γ(z)]

5.3 Reconstructing closed string worldsheets from open strings:
V vs. F-type duality

We have seen how to associate to a point on the (decorated) moduli space of punctured Riemann surfaces
Mg,n ⇥ Rn

+, a metrized ribbon graph. This was done through the critical graph of the unique Strebel
differential. As just discussed, to each edge of the critical graph - or alternatively to each diamond shaped
region - we associate an infinite strip. The width of the strip is simply the Strebel length of the edge. As we
now discuss, gauge-string duality (specially, of the V-type) consists of gluing together these strips (identified
now with the ’t Hooft double line diagrams) to form the closed string worldsheet. In other words we use this
procedure as a precise way by which the gauge theory Feynman diagrams build up the dual Riemann surface.
We elaborate briefly on this proposal [20,21,39]. We will also see how F-type open string descriptions can also
be viewed in a similar vein with the critical graph itself now playing the main role. These two descriptions
are graph dual to each other, as we have seen, consistent with the duality of V- and F-type descriptions as
discussed in Sec. 4.

V-type duals

In V-type duality, vertices of the gauge theory Feynman diagrams coincide with the marked points (insertions)
of the dual closed string worldsheet. We will view internal vertices (in a perturbative expansion) as dual to
additional insertions of the closed string vertex operators. The first step in reconstructing the worldsheet
is to bunch together all homotopically equivalent propagators (arising from the free Wick contractions)
between two gauge theory vertices [20]. This simply means that such edges can be deformed into each other
without crossing any other edge or vertex. The resulting graph has been called a skeleton Feynman graph
in this context. Perhaps the simplest way to phrase V-type open-closed duality is that each such bunch of
ribbon graphs will reconstruct a diamond-shaped region on the closed string worldsheet - see Fig.19a. This
"diamond" is the same one we discussed earlier in Fig. 18,

(a) V-Dual Reconstruction
(b) From worldlines to open string
strips

(c) Gluing homotopically equiva-
lent ribbons ( string bits)

Figure 19: V-type Duality: a) In V-type duality, homotopically equivalent Wick contraction between vertices of
the gauge theory Feynman diagram reconstruct diamond shaped regions on the closed string worldsheet. (the different

colors are for clarity only) b) Worldlines of the gauge theory Feynman diagrams, with length ⌧ , can be viewed as
infinite open string strips of width ⇠ 1/⌧ . c) We "close up holes" by gluing adjacent ribbons sharing a matrix index
i. The widths of the adjacent strips simply add, with the Strebel length l = 1
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[Gaberdiel-R.G.-Knighton-Maity]



Open-Closed Triptych
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Figure 2: The horizontal trajectories of a Strebel di↵erential. The (double) poles of the Strebel dif-
ferential are denoted by black dots, while the zeros are represented by black crosses. The coloured
lines describe the critical horizontal trajectories that make up the critical Strebel graph, see Sec-
tion ?? for more details.
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1) Ribbon Graphs 2) Glued up Strips 3) Strebel Surface



          Bridge from Strings to Fields

This picture of large N Feynman diagrams strikingly predicts that the dual worldsheet 
amplitudes should have (a presentation with) -function support on points of .  

 Realised precisely in tensionless worldsheet theory of . [Eberhardt-Gaberdiel-R.G.]

 Correlators of  spectrally flowed representations  are zero unless  there 
exists  s.t.  in the vicinity of each . 

The -fn. behaviour transparent in a twistorial free field description of worldsheet. 

Liouville weight associated with the non-zero points also matches with Lunin-Mathur 
computation. 

δ ℳg,n

AdS3 × S3 × T4

1l(2,ℝ)1 3ki
j=1/2(xi, zi)

x = Γ(z) x ≈ xi + (z − zi)k + … zi

δ
[Dei-Gaberdiel-R.G.-Knighton]



Belyi Maps from Strings

Dual to the Hermitian Matrix model proposed [R.G.-Mazenc ’22]: A-model Topological String 
theory on Kazama-Suzuki coset  (with momentum deformation).

Physical cohomology given by operators  in  spectrally flowed 
representations - exactly like in the  case. [Mukhi-Vafa-Frenkel; Ashok-Murthy-Troost]

Ward Identity arguments again imply -fn. support on covering maps. But now no  
dependence. All  mapped to  on target space cigar. Branching  .

Need  momentum ( ) insertions for mom. conservation. Branching  .

Together with permutation , structure exactly that of Belyi maps.     

1l(2,ℝ)1/4(1)

5(ki)
j=1/2(zi) 1l(2,ℝ)1

AdS3

δ xi
5(ki)

j=1/2(zi) ∞ (k1)…(kn) → β

(k = ∑
i

ki)/2 2 (2)k/2 → α

γ



Questions, Questions

Are Arithmetic Riemann Surfaces universal saddle points (a la Gross-Mende) 
for tensionless strings (e.g. on AdS)?

Is there a mathematically natural sense in which one might localise (in the 
spirit of Atiyah-Bott) to arithmetic Riemann surfaces? “Arithmetic Localisation”

Can such a localisation be realised physically by a special class of topological 
strings?

Would the topological string description help you to better understand 
 and its representations? The String dual to Dessins d’Enfants. Gal(ℚ̄/ℚ)



Thanks for your attention


