## Gauge-String Duality and Arithmetic?

Rajesh Gopakumar, ICTS-TIFR, Bengaluru, "Connections between Number Theory and Physics", Pollica, Jun. 7th.

Based on works with: M. Gaberdiel, E. Mazenc, L. Eberhardt, P. Maity, B. Knighton,



#### In Outline

- What is gauge-string duality? Why deriving it is important (even for physicists!).
- Sketch of a Program (``l'Esquisse d'un Programme''): From worldlines to worldsheets.
- Illustrating the general idea: 2) AdS<sub>3</sub>/CFT<sub>2</sub> Duality [cf. Matthias' talk]
- Why Arithmetic Riemann Surfaces might have a special role to play.

1) The Simplest Gauge-String Duality (large N Matrix Integrals and Top. Strings).



### Gauge-String Duality

- gauge theories ('74)
- Feynman diagrams  $\rightarrow$  Ribbon Graphs. Associate a topology to the graph, weight  $N^{2-2g}$ .
- Reminiscent of a perturbative string expansion (with  $g_s^2 \sim \frac{1}{N^2}$ ).
- Relates Strings to Fields (cf. Langlands).
- Remained a suggestive picture till the AdS/CFT Duality [Maldacena'97].



#### A broader term than the AdS/CFT Correspondence. Originates in 't Hooft's large N limit of U(N)



IREE LEVEI ((2=0) g=1 9=2)



## Deriving Gauge-String Duality

- Mow exactly do large N QFTs reorganise themselves into theories of strings?
- D-brane physics indicates open-closed string duality as an underlying reason.
- Can we turn this into a precise recipe which enables one to derive the string dual to QCD?
- Large N Gauge theory Feynman diagrams are open string diagrams.
- Holes close up (and deform the background).
- But difficult to see this explicitly happen at large  $g_s N = \lambda$ .





#### The Other Lamp Post



- Focus on the corner where we understand the QFT but not necessarily the bulk.
- Free (perturbative) QFT as λ → 0 ↔
  `Tensionless' limit of dual string theory. [Sundborg, Sezgin-Sundell, Witten...]
  Finite # of Feynman diagrams, of any genus. Power series in λ given by Wick contractions.
- Test Cases:

a) Matrix Model  $\leftrightarrow$  Top. A/B-Model String. b)  $(T^4)^N/S_N \leftrightarrow AdS_3 \times S^3 \times T^4$ . c) Pert.  $\mathcal{N} = 4$  SYM  $\leftrightarrow AdS_5 \times S^5$ .



#### From Worldlines to Worldsheets



#### SLOGAN: EACH FEYNMAN GRAPH $\leftrightarrow$ A CLOSED WORLDSHEET.

Exploits the Strebel parametrisation of  $\mathcal{M}_{g,n}$  [R.G.'05].

A refinement of 't Hooft's idea of associating a genus to double line Feynman graphs [R.G. '04].

### Implementation of open-closed string duality.





### Bridge from Fields to Strings

- Explain how individual Feynman diagrams translate to specific world sheets - points on  $\mathcal{M}_{g,n}$ .
- Pattern seen in our test cases: Matrix Models, Free Symmetric Product Orbifold CFT (and very likely, Perturbative Yang-Mills).
- \* Feyn. Diags.  $\leftrightarrow$  Permutations  $\leftrightarrow$  Branched Coverings  $\leftrightarrow$  Special points on  $\mathcal{M}_{g,n}$  (often arithmetic).
- \* Matches with worldsheet amplitude delta functions on  $\mathcal{M}_{g,n}$ . Weight also seems to be the natural geometric one (Nambu-Goto).





### Feynman diagrams $\leftrightarrow$ Permutations

- counting permutations. Equivalent to Grothendieck's Dessins.
- Matrix Model:  $N^n \langle \prod \operatorname{Tr} M^{k_i} \rangle_{conn}^{(g)} = N^{2-2g} \sum \delta(1, \alpha \cdot \beta \cdot \gamma) \mathbf{1}.$  $\alpha, \beta, \gamma$  are conjugacy classes in  $S_k$ ,  $(k = \sum k_i) \quad \alpha \in S_k$ 
  - $\beta$  indicates the cyclic structure of edges around each vertex  $(k_1)...(k_n)$ ;
  - $\alpha \in (2)^{k/2}$  labels different Wick contractions of edges;
  - $\gamma = \beta^{-1} \alpha^{-1}$  labels edges around a face.

Symm. Orbfld. CFT:  $\langle \prod \sigma_{k_i}(x_i) \rangle_{conn}^{(g)}$  labelled by *n* distinct single cycles ( $k_i$ ). Correlator is a sum over permutations that sew together these cycles.

Feynman diagrams for a correlator enumerate Wick contractions. View in terms of



[Itzykson et.al., de Mello Koch-Ramgoolam]



#### Permutations $\leftrightarrow$ Branched Coverings

- Enumerating such permutations is the same as counting branched covers.
- Each permutation in a conjugacy class associated to a branch point with definite ramification (cycle structure).
- \* For Matrix correlators,  $(\alpha, \beta, \gamma)$  associated with three branch points of  $\Sigma_g$  over  $\mathbb{P}^1 (\alpha \cdot \beta \cdot \gamma = 1)$ .
  - *`Belyi maps' only admissible at arithmetic points* on  $\mathcal{M}_{g,n}$ .



#### Permutations ↔ Branched Coverings

- This connection also underlies the Lunin-Mathur computation of symm. orbfld. CFT correlators.
- Lift to covering space geometrises permutations.
- *x<sub>i</sub>*-dependence of correlators now means *n* points w / branching  $k_i$ .
- Admissible only at discrete points on  $\mathcal{M}_{g,n}$ (depend on  $x_i$ ).



### Feynman diagrams ↔ Branched Covers

# Matrix Model K € (2) BE (3) $\hat{r}(z)$ ) ( د (ع) <sup>4</sup>



 Feynman diagrams directly pictured as covering space worldsheets pulled back from target space. [cf. Pakman, Rastelli, Razamat]
 1-1 correspondence between branched covers and distinct Feynman diagrams.



#### The Strebel Construction

- \* The point on  $\mathcal{M}_{g,n}$  associated to a Feynman diagram given by an explicit gluing construction of strips - string bit worldsheets.
- \* Relies on the parametrisation of  $\mathcal{M}_{g,n}$  by a unique quadratic (Strebel) differential  $\phi_{S}(z)dz^{2}$ . Has *n* double poles at marked points.
- \* It's `horizontal trajectories'  $\phi_{S}(z(t)) \left(\frac{dz(t)}{dt}\right)^{2} > 0$  foliate  $\Sigma_{g,n}$  into *n* disk faces each with pole at  $z_i$ , separated by a critical graph. Vertices of this Strebel graph are zeroes  $a_m$  of  $\phi_S$ .





\* Real Strebel lengths  $l_{km} = \int_{a_1}^{a_m} \sqrt{\phi_S(z)} dz$  and critical graph topology parametrises  $\mathcal{M}_{g,n}$ .



### Strebel Construction (Contd.)

- \* Vertical trajectories'  $\phi_S(z(t)) \left(\frac{dz(t)}{dt}\right)^2 < 0$ , begin and end on poles  $z_i$ .
  - Generates strips, glued at centres of faces (poles) and vertices of Strebel graph (zeroes) correspond to Feynman propagators.
- Feynman graph of corresponding worldsheet is dual to the Strebel graph. [Strebel graph another open string description - Triality!]
- Integer Strebel lengths (# of wick contractions in matrix model) ↔
   arithmetic points on  $M_{g,n}$ . [Mulase-Penkava, Razamat, R.G.]
- Gross-Mende like limit ( $k_i \rightarrow \infty$ ) in symm. orbfld. Also picks out the same arithmetic points. [Gaberdiel-R.G.-Knighton-Maity]
- \* Nambu-Goto weight in `Strebel gauge'  $e^{-\int_{\Sigma} d^2 z |\phi_S(z)|}$  gives right Liouville weight in this limit.  $\phi_S(z) \approx S[\Gamma(z)]$  Schwarzian.













## Bridge from Strings to Fields

- \* This picture of large N Feynman diagrams strikingly predicts that the dual worldsheet amplitudes should have (a presentation with)  $\delta$ -function support on points of  $\mathcal{M}_{g,n}$ .
- \* Realised precisely in tensionless worldsheet theory of  $AdS_3 \times S^3 \times T^4$ . [Eberhardt-Gaberdiel-R.G.]
- Correlators of  $\mathfrak{S}l(2,\mathbb{R})_1$  spectrally flowed representations  $\mathcal{V}_{j=1/2}^{k_i}(x_i, z_i)$  are zero unless there exists  $x = \Gamma(z)$  s.t.  $x \approx x_i + (z z_i)^k + \dots$  in the vicinity of each  $z_i$ .
- The δ-fn. behaviour transparent in a twistorial free field description of worldsheet.
   [Dei-Gaberdiel-R.G.-Knighton]

   Liouville weight associated with the non-zero points also matches with Lunin-Mathur
- Liouville weight associated with the non-z computation.



### Belyi Maps from Strings

- Dual to the Hermitian Matrix model proposed [R.G.-Mazenc '22]: A-model Topological String theory on Kazama-Suzuki coset  $\frac{gl(2,\mathbb{R})}{1}/\mathfrak{u}(1)$  (with momentum deformation).
- Physical cohomology given by operators  $\mathscr{Y}_{j=1/2}^{(k_i)}(z_i)$  in  $\mathscr{S}l(2,\mathbb{R})_1$  spectrally flowed representations exactly like in the  $AdS_3$  case. [Mukhi-Vafa-Frenkel; Ashok-Murthy-Troost]
  - Ward Identity arguments again imply  $\delta$ -fn. support on covering maps. But now no  $x_i$  dependence. All  $\mathscr{Y}_{j=1/2}^{(k_i)}(z_i)$  mapped to  $\infty$  on target space cigar. Branching  $(k_1)...(k_n) \rightarrow \beta$ .
- Need  $(k = \sum_{i} k_i)/2$  momentum (2) insertions for mom. conservation. Branching  $(2)^{k/2} \rightarrow \alpha$ .
- \* Together with permutation  $\gamma$ , structure exactly that of Belyi maps.



#### Questions, Questions

- Are Arithmetic Riemann Surfaces universal saddle points (a la Gross-Mende) for tensionless strings (e.g. on AdS)?
- Is there a mathematically natural sense in which one might localise (in the spirit of Atiyah-Bott) to arithmetic Riemann surfaces? "Arithmetic Localisation"
- \* Can such a localisation be realised physically by a special class of topological strings?
- \* Would the topological string description help you to better understand  $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$  and its representations? The String dual to Dessins d'Enfants.



#### Thanks for your attention

