Transversity and tensor charge: role of the Soffer Bound

Carlo Flore

Università di Torino \& INFN - Sezione di Torino

Sar Wors 2023
7 Jun 2023
U. D'Alesio, CF, A. Prokudin, Phys. Lett. B 803 (2020) 135347

Introduction - Transversity function

- collinear transversity function $h_{1}^{q}(x)$ describes the collinear structure of spin- $\frac{1}{2}$ hadrons at leading twist
- chiral-odd quantity \Rightarrow not accessible in inclusive DIS
- extracted in SIDIS (TMD framework) or in two-hadron production with polarized dihadron FF (collinear pQCD)
- Soffer Bound [J. Soffer, Phys. Rev. Lett. 74 (1995) 1292-1294]

$$
\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq \frac{1}{2}\left[f_{q / p}\left(x, Q^{2}\right)+g_{1 L}^{q}\left(x, Q^{2}\right)\right] \equiv S B^{q}\left(x, Q^{2}\right)
$$

- bound preserved by Q^{2} evolution up to NLO in QCD
[V. Barone, Phys. Lett. B 409 (1997) 499-502; W. Vogelsang, Phys. Rev. D 57 (1998) 1886-1894]

Introduction - tensor charges (I)

- quarks contribute to nucleon tensor charge via the first Mellin moment of the non-singlet quark combination, δq

$$
\delta q=\int_{0}^{1}\left[h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right] d x
$$

- isovector combination of tensor charges, g_{T}

$$
g_{T}=\delta u-\delta d
$$

- δq and g_{T} relatively easy to compute in lattice QCD, also estimated starting from phenomenological extractions
- g_{T} is related to BSM effects: a bridge between QCD phenomenology, lattice QCD and BSM physics

Introduction - tensor charges (II)

Current situation for tensor charges:

Adapted from Fig. 3 of [L. Gamberg et al., Phys. Rev. D 106 (2022) 3, 034014]
Caveats:

- different parametrizations for different phenomenological analyses
- experimental data not available for the full x-range \Rightarrow extrapolation
- lattice QCD estimates done with different settings, computed as matrix element over $0<x<1$

Introduction - tensor charges (II)

Current situation for tensor charges:

Adapted from Fig. 3 of [L. Gamberg et al., Phys. Rev. D 106 (2022) 3, 034014]
Caveats:

- different parametrizations for different phenomenological analyses
- experimental data not available for the full x-range \Rightarrow extrapolation
- lattice QCD estimates done with different settings, computed as matrix element over $0<x<1$

Soffer Bound \& phenomenological fits

- adopting

$$
h_{1}^{q}\left(x, Q_{0}^{2}\right) \propto S B^{q}\left(x, Q_{0}^{2}\right)
$$

is very common in phenomenological fits, both in collinear QCD and TMD physics
[M. Anselmino et al., Phys. Rev. D 75 (2007) 054032 \& Phys. Rev. D 92 (11) (2015) 114023]
[A. Bacchetta, A. Courtoy, M. Radici, JHEP03 (2013) 119; M. Radici, A. Bacchetta, Phys. Rev. Lett. 120 (19) (2018) 192001]

- parametrizations are built so that SB is automatically fulfilled for every x and Q^{2} values

Soffer Bound \& phenomenological fits

- adopting

$$
h_{1}^{q}\left(x, Q_{0}^{2}\right) \propto S B^{q}\left(x, Q_{0}^{2}\right)
$$

is very common in phenomenological fits, both in collinear QCD and TMD physics
[M. Anselmino et al., Phys. Rev. D 75 (2007) 054032 \& Phys. Rev. D 92 (11) (2015) 114023]
[A. Bacchetta, A. Courtoy, M. Radici, JHEP03 (2013) 119; M. Radici, A. Bacchetta, Phys. Rev. Lett. 120 (19) (2018) 192001]

- parametrizations are built so that SB is automatically fulfilled for every x and Q^{2} values

potential bias!

Soffer Bound \& phenomenological fits

- adopting

$$
h_{1}^{q}\left(x, Q_{0}^{2}\right) \propto S B^{q}\left(x, Q_{0}^{2}\right)
$$

is very common in phenomenological fits, both in collinear QCD and TMD physics
[M. Anselmino et al., Phys. Rev. D 75 (2007) 054032 \& Phys. Rev. D 92 (11) (2015) 114023]
[A. Bacchetta, A. Courtoy, M. Radici, JHEP03 (2013) 119; M. Radici, A. Bacchetta, Phys. Rev. Lett. 120 (19) (2018) 192001]

- parametrizations are built so that SB is automatically fulfilled for every x and Q^{2} values

potential bias !

- recall: not so many data points to fit, narrow x-region $\Rightarrow \delta q$ and g_{T} mostly extrapolated in the full x-range

Soffer Bound \& phenomenological fits

- adopting

$$
h_{1}^{q}\left(x, Q_{0}^{2}\right) \propto S B^{q}\left(x, Q_{0}^{2}\right)
$$

is very common in phenomenological fits, both in collinear QCD and TMD physics
[M. Anselmino et al., Phys. Rev. D 75 (2007) 054032 \& Phys. Rev. D 92 (11) (2015) 114023]
[A. Bacchetta, A. Courtoy, M. Radici, JHEP03 (2013) 119; M. Radici, A. Bacchetta, Phys. Rev. Lett. 120 (19) (2018) 192001]

- parametrizations are built so that SB is automatically fulfilled for every x and Q^{2} values

potential bias!

- recall: not so many data points to fit, narrow x-region $\Rightarrow \delta q$ and g_{T} mostly extrapolated in the full x-range
- role of the SB recently studied also in PQCD in two-hadron production

[J. Benel, A. Courtoy, R. Ferro-Hernandez, Eur. Phys. J. C 80 (2020) 5, 465]

Soffer Bound \& phenomenological fits

- adopting

$$
h_{1}^{q}\left(x, Q_{0}^{2}\right) \propto S B^{q}\left(x, Q_{0}^{2}\right)
$$

is very common in phenomenological fits, both in collinear QCD and TMD physics
[M. Anselmino et al., Phys. Rev. D 75 (2007) 054032 \& Phys. Rev. D 92 (11) (2015) 114023]
[A. Bacchetta, A. Courtoy, M. Radici, JHEP03 (2013) 119; M. Radici, A. Bacchetta, Phys. Rev. Lett. 120 (19) (2018) 192001]

- parametrizations are built so that SB is automatically fulfilled for every x and Q^{2} values

potential bias!

- recall: not so many data points to fit, narrow x-region $\Rightarrow \delta q$ and g_{T} mostly extrapolated in the full x-range
- role of the SB recently studied also in PQCD in two-hadron production
[J. Benel, A. Courtoy, R. Ferro-Hernandez, Eur. Phys. J. C 80 (2020) 5, 465]
- new approach: no automatic fulfillment of the SB in the parametrization, but application of the SB a posteriori
[U. D'Alesio, CF, A. Prokudin, Phys. Lett. B 803 (2020) 135347]

TMD transversity \& Collins global fit (I)

- global fit of TMD transversity and Collins functions from SIDIS and $e^{+} e^{-}$data
- $h_{1}^{q}\left(x, k_{\perp}^{2}\right)$ accessible through SIDIS azimuthal asymmetries:

$$
A_{U T}^{\sin \left(\phi_{h}+\phi s\right)}=\frac{2(1-y)}{1+(1-y)^{2}} \frac{F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}}{F_{U U}}
$$

where $F_{U U}=\mathcal{C}\left[f_{1} D_{1}\right]$ and $F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}=\mathcal{C}\left[h_{1} H_{1}^{\perp}\right]$

- Collins function also accessible from $\cos \left(2 \phi_{0}\right)$ modulation of $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ cross sections via $A_{0}^{U L(C)} \propto \mathcal{C}\left[\bar{H}_{1}^{\perp} H_{1}^{\perp}\right]$
- baseline fit: [m. Anselmino et al., Phys. Rev. D 92 (2015) 11, 114023]
- dataset:
(a) $A_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}$ data from HERMES and COMPASS
(b) $A_{0}^{U L(C)}$ measurements from BELLE, BABAR and BESIII
- $N_{\text {pts }}=278$

TMD transversity \& Collins global fit (II)

- Gaussian parametrization:

$$
\begin{gathered}
h_{1}^{q}\left(x, k_{\perp}^{2}\right)=h_{1}^{q}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}, \quad h_{1}^{q}\left(x, Q_{0}^{2}\right)=\mathcal{N}_{q}^{T}(x) S B^{q}\left(x, Q_{0}^{2}\right) \\
\mathcal{N}_{q}^{T}(x)=N_{q}^{T} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}, \quad\left(q=u_{v}, d_{v}\right)
\end{gathered}
$$

- upon constraining

$$
\left|N_{q}^{T}\right| \leq 1
$$

SB is automatically fulfilled

TMD transversity \& Collins global fit (II)

- Gaussian parametrization:

$$
\begin{gathered}
h_{1}^{q}\left(x, k_{\perp}^{2}\right)=h_{1}^{q}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}, \quad h_{1}^{q}\left(x, Q_{0}^{2}\right)=\mathcal{N}_{q}^{T}(x) S B^{q}\left(x, Q_{0}^{2}\right) \\
\mathcal{N}_{q}^{T}(x)=N_{q}^{T} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}, \quad\left(q=u_{v}, d_{v}\right)
\end{gathered}
$$

- upon constraining

$$
\left|N_{q}^{\top}\right| \leq 1
$$

SB is automatically fulfilled

- apply the new approach: no constraint for the fit, check a posteriori MC sets satisfying $\left|N_{q}^{T}\right| \leq 1$

TMD transversity \& Collins global fit (II)

- Gaussian parametrization:

$$
\begin{gathered}
h_{1}^{q}\left(x, k_{\perp}^{2}\right)=h_{1}^{q}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}, \quad h_{1}^{q}\left(x, Q_{0}^{2}\right)=\mathcal{N}_{q}^{T}(x) S B^{q}\left(x, Q_{0}^{2}\right) \\
\mathcal{N}_{q}^{T}(x)=N_{q}^{T} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}, \quad\left(q=u_{v}, d_{v}\right)
\end{gathered}
$$

- upon constraining

$$
\left|N_{q}^{\top}\right| \leq 1
$$

SB is automatically fulfilled

- apply the new approach: no constraint for the fit, check a posteriori MC sets satisfying $\left|N_{q}^{T}\right| \leq 1$
- a twofold advantage:
- remove potential bias in the parametrization
- test if data compatible with SB

TMD transversity \& Collins global fit (II)

- Gaussian parametrization:

$$
\begin{gathered}
h_{1}^{q}\left(x, k_{\perp}^{2}\right)=h_{1}^{q}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}, \quad h_{1}^{q}\left(x, Q_{0}^{2}\right)=\mathcal{N}_{q}^{T}(x) S B^{q}\left(x, Q_{0}^{2}\right) \\
\mathcal{N}_{q}^{T}(x)=N_{q}^{T} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha} \beta^{\beta}}, \quad\left(q=u_{v}, d_{v}\right)
\end{gathered}
$$

- upon constraining

$$
\left|N_{q}^{\top}\right| \leq 1
$$

SB is automatically fulfilled

- apply the new approach: no constraint for the fit, check a posteriori MC sets satisfying $\left|N_{q}^{T}\right| \leq 1$
- a twofold advantage:
- remove potential bias in the parametrization
- test if data compatible with SB
- two cases: "using $\mathrm{SB}^{\prime \prime}\left(\left|N_{q}^{\top}\right| \leq 1\right.$ a posteriori) or "no SB" $\left(\left|N_{q}^{\top}\right| \leq T\right)$

Fit results (I)

- shaded grey areas correspond to regions where data is not available
- almost same $\chi_{\text {dof }}^{2} \approx 0.93$
- out of $10^{5} \mathrm{MC}$ sets produced for the "noSB" case, $\approx 16 \%$ fulfill $\left|N_{q}^{\top}\right| \leq 1 \Rightarrow$ sets for "using SB" case
- $h_{1}^{u_{v}}(x)$ does not change while relaxing the SB constraint, $h_{1}^{d_{v}}(x)$ apparently violates SB
- violation is less than 1σ statistically significant where data is available

Fit results (II)

- "using SB single fit": apply SB a priori - automatic fulfillment of the SB throughout the fit
$\Rightarrow N_{d_{v}}^{\top}$ saturates at its lower value, MINUIT underestimates the uncertainty on $N_{d_{v}}^{T} \Rightarrow$ uncertainty for $h_{1}^{d_{v}}$ underestimated
- "using SB": apply SB a posteriori \Rightarrow minimizator explores other configurations in the parameter space, compatible with the SB, that were not seen due to the bias introduced in the parametrization

Fit results - tensor charges (I)

- δu_{v} does not change very much
reflects the marginal difference on the fitted functions
- broader distribution for δd_{v}
removing the SB constraint allows to properly explore the parameter space

Fit results - tensor charges (II)

- peak of the "no SB" distribution moves towards lattice estimates
- tail overlaps with the lattice QCD range $0.9 \lesssim g_{T} \lesssim 1.1$

	δu_{v}	δd_{v}	g_{T}
		$Q^{2}=4 \mathrm{GeV}^{2}$	
using SB	0.42 ± 0.09	-0.15 ± 0.11	0.57 ± 0.13
no SB	0.40 ± 0.09	-0.29 ± 0.22	0.69 ± 0.21

Fit results - tensor charges (II)

- peak of the "no SB" distribution moves towards lattice estimates
- tail overlaps with the lattice QCD range $0.9 \lesssim g_{T} \lesssim 1.1$

	δu_{v}	δd_{v}	g_{T}
		$Q^{2}=4 \mathrm{GeV}^{2}$	
using SB	0.42 ± 0.09	-0.15 ± 0.11	0.57 ± 0.13
no SB	0.40 ± 0.09	-0.29 ± 0.22	0.69 ± 0.21

Fit results - tensor charges (II)

- peak of the "no SB" distribution moves towards lattice estimates
- tail overlaps with the lattice QCD range $0.9 \lesssim g_{T} \lesssim 1.1$

	δu_{v}	δd_{v}	g_{T}
		$Q^{2}=4 \mathrm{GeV}^{2}$	
using SB	0.42 ± 0.09	-0.15 ± 0.11	0.57 ± 0.13
no SB	0.40 ± 0.09	-0.29 ± 0.22	0.69 ± 0.21

Fit results - tensor charges (II)

- peak of the "no SB" distribution moves towards lattice estimates
- tail overlaps with the lattice QCD range $0.9 \lesssim g_{T} \lesssim 1.1$

	δu_{v}	δd_{v}	g_{T}
		$Q^{2}=4 \mathrm{GeV}^{2}$	
using SB	0.42 ± 0.09	-0.15 ± 0.11	0.57 ± 0.13
no SB	0.40 ± 0.09	-0.29 ± 0.22	0.69 ± 0.21

Conclusions and outlook

- we have studied the role of the SB in the determination of transversity and the tensor charges
- we proposed a new approach for the application of positivity bounds in phenomenological fits
- relaxing the constraint on the SB in the parametrization allows to:
- properly explore the parameter space
- ease the tension between phenomenological analyses and lattice QCD computation for g_{T}
- test whether theorethical expectations are met by experimental data

Conclusions and outlook

- we have studied the role of the SB in the determination of transversity and the tensor charges
- we proposed a new approach for the application of positivity bounds in phenomenological fits
- relaxing the constraint on the SB in the parametrization allows to:
- properly explore the parameter space
- ease the tension between phenomenological analyses and lattice QCD computation for g_{T}
- test whether theorethical expectations are met by experimental data
- next: A_{N} in polarized $p p$ scattering within different formalisms

Conclusions and outlook

- we have studied the role of the SB in the determination of transversity and the tensor charges
- we proposed a new approach for the application of positivity bounds in phenomenological fits
- relaxing the constraint on the SB in the parametrization allows to:
- properly explore the parameter space
- ease the tension between phenomenological analyses and lattice QCD computation for g_{T}
- test whether theorethical expectations are met by experimental data
- next: A_{N} in polarized $p p$ scattering within different formalisms

Thank you

Backup

Fit results - settings

- Collinear PDFs: CTEQ66
- Collinear helicity: DSSV
- Collinear FF: DEHSS $2014(\pi) / 2017(K)$
- central value and uncertainties:

$$
\begin{aligned}
\mathrm{E}[\mathcal{O}]= & \int d^{n} a \mathcal{P}(\boldsymbol{a} \mid \text { data }) \mathcal{O}(\boldsymbol{a}) \simeq \sum_{k} w_{k} \mathcal{O}\left(\boldsymbol{a}_{k}\right) \\
\mathrm{V}[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\boldsymbol{a} \mid \text { data })(\mathcal{O}(\boldsymbol{a})-\mathrm{E}[\mathcal{O}])^{2} \\
& \simeq \sum_{k} w_{k}\left(\mathcal{O}\left(\boldsymbol{a}_{k}\right)-\mathrm{E}[\mathcal{O}]\right)^{2}
\end{aligned}
$$

- Giele-Keller weights:

$$
w_{k}=\frac{\exp \left[-\frac{1}{2} \chi^{2}\left(\boldsymbol{a}_{k}\right)\right]}{\sum_{i} w_{i}}
$$

Fit results - using SB

- auomatic fulfillment of the SB brings to underestimate the uncertainty
- underestimation is more severe in the region of fitted data

Fit results - Collins function

- parametrization:

$$
\begin{aligned}
H_{1}^{\perp q}\left(z, p_{\perp}^{2}\right) & =\mathcal{N}_{q}^{C}(z) \frac{z m_{h}}{M_{C}} \sqrt{2 e} e^{-p_{\perp}^{2} / M_{C}^{2}} D_{h / q}\left(z, p_{\perp}^{2}\right),(q=\text { fav, unf }) \\
\mathcal{N}_{\text {fav }}^{C}(z) & =N_{\text {fav }}^{C} z^{\gamma}(1-z)^{\delta} \frac{(\gamma+\delta)^{\gamma+\delta}}{\gamma^{\gamma} \delta^{\delta}}, \quad \mathcal{N}_{\text {unf }}^{C}(z)=N_{\mathrm{unf}}^{C}
\end{aligned}
$$

- Collins function mostly constrained by $e^{+} e^{-}$data essentially no change between "using SB" and "no SB" cases

$$
\begin{array}{rrr}
0.2 \\
\\
\hline
\end{array}
$$

