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Extraction of TMD Fragmentation Functions

Access to the 3D-dynamics of confinement

Standard TMD
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factorization
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A process with a single hadron may
offer a cleaner access to TMD FFs
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The transverse momentum of the detected
hadronis measured w.r.t. the thrust axis
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Always two TMDs that have to
be extracted simultaneously



hree kinematic regions

Depending on where the hadron is located within the jet the underlyingkinematics
can be remarkably different, resulting in different factorization theorems
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The hadronis detected very close to the axis of the jet.

O Extremely small P;

O Soft radiation affects significantly the transverse deflection of the
hadron from the thrust axis

= j

s ™

The hadronis detected in the central region of the jet.
O Most common scenario
O Majority of experimental data expected to fall into this case
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The hadronis detected near the boundary of the jet.
0 Moderately small Py
O The hadron transverse momentum affects the topology of the
final state directl
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The three regions are uniquely determined by the specific role of soft and soft-collinear radiation:
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collinear

58 TMD-relevant TMD-relevant || TMD-relevant |
Hs || TMD-irrelevant || TMD-relevant || TMD-relevant
Hq || TMD-1rrelevant || TMD-1rzelevant | TMD-relevant [

d!‘TH.‘E ~ u”l .

56
V. Cpr

Different decompositionslead to different

factorized cross sections

Factorization works in the same way for all the
three regions, but it produces different results

depending on the underlying kinematics
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Red blobs are TMD-relevant
Blue blobsare TMD-irrelevant




The three regions are uniquely determined by the specific role of soft and soft-collinear radiation: u—->1-T
soft soft-collinear collinear
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The hadronis detected very close to the axis of the jet.

L Extremely small P;

Ry| do~HJ(u)X(u,br) D(z,br) | €= | O Soft radiation affects significantly the transverse deflection of the
g hadron from the thrust axis
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The hadronis detected in the central region of the jet.

Ry do ~ H.J(u)S(u) D(z,br) O Most common scenario

O Majority of experimental data expected to fall into this case J
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The hadronis detected near the boundary of the jet.

O Moderately small P,

O The hadron transverse momentum affects the topology of the

\ final state directly )
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[ Non-global Iogs]
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effects related to the effects that generate
topology of the final transverse
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The hadronis detected in the central region of the jet. Mp FE
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0 Most common scenario

0 Majority of experimental data expected to fall into this case
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[ Non-global Iogs]
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J
/ / 7
The hadronis detected in the central region of the jet. Mp FE
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Ry  do~ HJ(u)S(u)D(z,br) 0 Most common scenario

0 Majority of experimental data expected to fall into this case
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{ Non-global Iogs]

The hadronis detected very close to the axis of the jet.

v O Extremely small P;
Ry do ~ HJ (1 Z’ (w,bp) D (2, br) O Soft radiation affects significantly the transverse deflection of the

N hadron from the thrust axis
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effects related to the effects that generate Is universality
: FRAGMENTATION .
topology of the final transverse | in danger?
state momentum FUNCTION!
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The hadronis detected in the central region of the jet.
R do ~ H.J(u)S z,br) d Most common scenario
O Majority of experimental data expected to fall into this case J
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Standard TMD factorization can be extended beyond the standard processes (DY, SIDIS, DIA) at the cost of
includinga new, independent, non-perturbative function (the soft model).

DCSS(Z- br) = D(z,br)\/ Mg(br)

Universality is saved!

Expected tension between 1-hadron and 2-hadron processes
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2-h
extraction

1-h
extraction

> Access to soft physics!
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From Zaccheddu's talk at QCD evolution
2-h and 1-h data cannot be described by the
same non-perturbative model!
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Central region...

Ry

/
The hadronis detected in the central region of the jet. TMD FE
0 Most common scenario
O Majority of experimental data expected to fall into this case
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..peculiar role of rapidities
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Rapidity divergences in the central region

SIAM has a
double nature:

Thrust dependent observable
The thrust naturally regularizes the rapidity divergences.

The 2-jet limit corresponds to removing the regulator and to exposing the rapidity
divergences in fixed order calculations.

So the final result depends on a regulator? Yes, but...

1) The thrustis measured.
2) When the regulator is removed the (factorized) cross section vanishes

TMD observable
The rapidity cut-offs artificially regularize the rapidity divergences.

divergences in fixed order calculations.
So the final result depends on a regulator? Yes (in principle), but...

1) The rapidity cut-offs are just mathematical tools.

K and the final cross section is rapidity cut-offs independent.

The limits ¥1.2 — 00 correspond to removing the regulator and to exposing the rapidity

2) In standard TMD factorization they cancel among themselves before the limit is taken
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Both kind of regularization coexists in SIA™.

Therefore, it should not be surprising that the two mechanisms intertwine and that thrust and rapidity

regulators are strictly related.

This signals a redundancy of regulators: one can be expressed in terms of the other.

In particular, the rapidity cut-off

removed. In other words: Y

T — 0

/Naivelyfrom kinematics... \

yn > —log /T ) y1 o< —log /T

Rapidity of
detected
hadron

1should be a function of thrust, such that when it is removed, also - IS

Peculiar and very unique
feature of the central region!

/but also formally: \
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The double counting due to the overlap between soft and collinear
(forward) radiationis cancelled only if the rapidity cut-off is fixed to
a function of thrust and transverse momentum
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(but also formally:

a function of thrust and transverse momentum

The double counting due to the overlap between soft and collinear
(forward) radiationis cancelled only if the rapidity cut-off is fixed to
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The double counting due to the overlap between soft and collinear
(forward) radiationis cancelled only if the rapidity cut-off is fixed to
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a function of thrust and transverse momentum
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Monotonic increasing (unique minimum)
Constant at large distances
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Factorization theorem in the central region

{Genuinelythrust. Exponentis half of standa rd]
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between the measured variables The function gx does notonly

appearintothe TMD FF!

[ Correlation part. It encodes the correlations]
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Matching R, with R,

soft soft-collinear collinear

I TMD-relevant || TMD-relevant | TMD-relevant [

Hy || TMD-rrelevant | TMD-relevant | TMD-relevant |

Fa || TMD-irrelevant || TMD-irrelevant || TMD-relevant -

soft soft-collinear collinear

R TMD-relevant TMD-relevant TMD-relevant

F- TMD-irrelevant TMD-relevant TMD-relevant

Matchingregion, not an

, , , , Maq || TMD-1rrelevant || TMD-irrelevant || TMD-relevant
independent kinematicregion :

R4 TMD-irrelevant || TMD-irrelevant || TMD-relevant




Remarkably, there is a factorization theorem holding in the matchingregion!
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Remarkably, there is a factorization theorem holding in the matching region!

Small by, _LMTQ‘E: b
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Remarkably, there is a factorization theorem holding in the matchingregion!

Small by, Large/ by
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This is exactly the result
obtainedin SCET for Region 2!

Joint thrust and TMD resummation in electron-positron and electron-
proton collisions

Yiannis Makris (INFN, Pavia), Felix Ringer (LBNL, NSD), Wouter J. Waalewijn (Delta ITP, Amsterdam and
Nikhef, Amsterdam) (Sep 24, 2020)

/ \Pubshed in: JHEP 02 (2021) 070 » e-Print: 2009.11871 [hep-ph] / \

Constrainingthe generalized FJF
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Totally non-perturbative object Relevant for other processes (hadroniin jet)

The differences with SCET result

Kare at non-perturbative level / K Relevant for EIC! /




Conclusions

O The factorization theorem(s) for SIA with thrust is now complete and consistent. m
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O The intertwiningbetween thrust and rapidity regulators offers new perspective on the study
of the Collins-Soperkernel
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EEY il
Full treatment of the thrust distribution in single inclusive e" e~ — h X ’
processes

M. Boglione (Turin U. and INFN, Turin), A. Simonelli (Jun 5, 2023)

e-Print: 2306.02937 [hep-ph]
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