Phenomenological analysis of $e^+e^- \rightarrow hX$ data and extraction of TMD Fragmentation Functions from thrust dependent observables

SIDIS and e⁺e⁻ annihilations in two hadrons

e^+e^- annihilations in one hadron: $e^+e^- \rightarrow h X$

One of the cleanest ways to access

TMD Fragmentation Functions*...

BUT

$D^{*}(P_{T})$ is not the same as $D(P_{T})$!!!

Relation between FF and FF*

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

 $D = D^* \sqrt{M_S}$

SQUARE ROOT DEFINITION

Usual definition of TMDs. Soft Gluon Factor contributing to the cross section are included in the two TMDS and equally shared between them.

FACTORIZATION DEFINITION

Purely collinear TMD, totally free from any soft gluon contribution.

SOFT MODEL

The Soft Gluon Factor appearing in the cross section (process dependent) is **not** included in the TMD

- Same for Drell-Yan, SIDIS and 2-hadron production. (2-h class universality).
- Non-perturbative function (phenomenology).

$e^+e^- \rightarrow hX$ cross section

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

The hadronic cross section is not a convolution of a partonic cross section with a TMD FF

Kinematic Regions

M. Boglione, A. Simonell, JHEP 02 (2022)

	soft	soft-collinear	collinear
R_1	TMD-relevant	TMD-relevant	TMD-relevant
R_2	TMD-irrelevant	TMD-relevant	TMD-relevant
R_3	TMD-irrelevant	TMD-irrelevant	TMD-relevant

Kinematic Regions

M. Boglione, A. Simonell, JHEP 02 (2022)

	soft	soft-collinear	collinear
R_1	TMD-relevant	TMD-relevant	TMD-relevant
R_2	TMD-irrelevant	TMD-relevant	TMD-relevant

Phenomenology of $e^+e^- \rightarrow hX$ processes

M. Boglione, A. Simonelli, 2306. 02937 [hep-ph]

T						;	z						$P_T/z \max$	N
	25	30	35	40	45	50	55	60	65	20	75	80		
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	- 0.		
	20 -	25 -	30 -	35 -	40 -	45 -	50 -	55 -	- 09	65 -	- 02	75 -		
	0.0	0.0	0.0	0.0	0.	0.	0.	0.	0.0	0.0	0.	0.		
0.80 - 0.85													0.16Q	57
0.85 - 0.90													0.15Q	60
0.90 - 0.95 v	\bigcap												0.14Q	61
0.95 - 1.00													0.13Q	52
					1			1						7
	Z	7											Avoiding Re	gion 3

Avoiding Region 1

Selection of 230 data points, binned in z, P_T and T

Phenomenology

BELLE Phys. Rev. D99 (2019) 11 112006

Step 1: preliminary fit to pin down the profile of the of the TMD

Selection of 57 data points, binned in z and P_T at fixed T (0.80<T<0.85)

TMD Fragmentation Function

$$\begin{split} \frac{d\sigma}{dz_{h} dT dP_{T}^{2}} &= \pi \sum_{f} \int_{z_{h}}^{1} \frac{dz}{z} \frac{d\hat{\sigma}_{f}}{dz_{h}/z dT} D_{1, \pi^{\pm}/f}(z, P_{T}, Q, (1-T)Q^{2}) \\ \\ \text{Fourier Transform of:} \\ \widetilde{D}_{h/j}(z, a_{S}(\mu), \mathcal{L}_{b}, \log \frac{\sqrt{\zeta}}{\mu}; b_{T}) &= \widetilde{D}_{h/j, \star}(z, a_{S}(\mu_{b}^{\star})) \times \\ &\times \exp\left\{\frac{1}{2} \widetilde{K}_{\star}(a_{S}(\mu_{b}^{\star})) \log \frac{\sqrt{\zeta}}{\mu_{b}^{\star}} + \int_{\mu_{b}^{\star}}^{\mu} \frac{d\mu'}{\mu'} \gamma_{D}\left(a_{S}(\mu'), \log\left(\frac{\sqrt{\zeta}}{\mu'}\right)\right)\right\} \times \begin{array}{c} \text{Perturbative} \\ \text{part (NLL)} \\ \\ &\times M_{D}(z, b_{T}; j, h) \exp\left\{-\frac{1}{2}g_{K}(b_{T}) \log \frac{\sqrt{\zeta}}{M_{h}}\right\} \end{array} \begin{array}{c} \text{Non-Perturbative part} \\ \text{Phenomenological} \\ \text{Model} \\ \\ \end{array} \end{split}$$

Phenomenological parametrization: M_D

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

$$M_D(z, b_T) = \frac{2}{\Gamma(p(z) - 1)} \left(\frac{b_T m(z)}{2}\right)^{p(z) - 1} K_{p(z) - 1} \left(b_T m(z)\right)$$

Gaussian behaviour at small b_T Exponential fall off at large b_T BK parameters depend on z

$$p(z) = \frac{1}{2} \left(\frac{3}{1 - R(z)} - 1 \right), \qquad m(z) = \frac{W(z)}{z} \sqrt{\frac{3}{1 - R(z)}}$$
$$R(z) = 1 - \alpha \frac{f(z)}{f(z_0)} \text{ with } f(z) = z \left(1 - z\right)^{\frac{1 - z_0}{z_0}}, \qquad W(z) = \frac{m_{\pi}}{R(z)^2}$$

The z behaviour of M_D is model in such a way that it offers a direct check that the theory lines appropriately reproduce the width of the measured cross sections, at each value of z ($z_0 \sim 0.5 - 0.6$)

BELLE Phys. Rev. D99 (2019) 11 112006

Phenomenological parametrization: g_K

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

In this analysis we consider 2 different hypothesis for g_{κ} for which, asymptotically, we have $g_{\kappa} = \text{const.}$

J. Collins, T. Rogers, Phys. Rev. D 91, 074020 (2015) C. Aidala et al., Phys.Rev. D89, 094002 (2014) A.. Vladimirov Phys. Rev. Lett. 125, 192002 (2020).

Quadratic at small bT

Constant at large bT

$$g_K \sim g_2 b_T^2 + \dots \text{ for } b_T \to 0$$

 $g_K \to g_0 \text{ for } b_T \to \infty.$

$$g_K^A(b_T) = g_0 \, anh\left(eta^2 \, rac{b_T^2}{b_{MAX}^2}
ight), \ g_K^B(b_T) = g_0 \, anh\left(eta^2 \, b_T^\star \, b_T
ight).$$

Testing different b_T behaviors of g_K allows us to give a reliable estimate of the uncertainties affecting our analysis

Phenomenological results – Preliminary fit

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

Preliminary Fit

4 free parameters

Data selection: 57 data points 0.275 < z < 0.675 q_T < 0.16 Q T=0.825

$\chi^2/{ m d.o.f.}$	0.6183
z_0	$0.5521\substack{+0.0415\\-0.0398}$
lpha	$0.3644\substack{+0.0250\\-0.0282}$
g_0	$0.2943\substack{+0.0329\\-0.0261}$
eta	$4.7100\substack{+1.9856\\-1.9856}$

BELLE Collaboration, R. Seidl et al., Phys. Rev. D99 (2019), no. 11 112006

Thrust non-pertubative effects

R.A. Davison, B.R. Webber, Eur.Phys.J.C59:13-25, 2009

Non-perturbative contributions affect thrust distributions (well known from fully inclusive e^+e^- annihilation data)

A simple shift is not enough to reach agreement with experimental data

Non perturbative contributions to thrust distributions are mild at large values of Q.

A slight shift is sufficient to reach agreement with experimental data

Thrust non-pertubative effects

R.A. Davison, B.R. Webber, Eur.Phys.J.C59:13-25, 2009

Non-perturbative contributions affect thrust distributions (well known from fully inclusive e^+e^- annihilation data)

A simple shift is not enough to reach agreement with experimental data

Non perturbative contributions to thrust distributions are mild at large values of Q.

A slight shift is sufficient to reach agreement with experimental data

Phenomenological results – T dependence

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

$$\frac{d\sigma}{dz\,dT\,d^2\vec{P}_T} = \frac{d\sigma^{\text{res.}}}{dz\,dT\,d^2\vec{P}_T}\Big|_{T-T_0} f_{\text{NP}}(1-T)$$

Shift the resummed factorized cross section

Multiply by shaping function
$$f_{NP}(1-T)$$

 $f_{NP}(1-T) \rightarrow 1$ when $T \rightarrow 0$
 $f_{NP}(1-T) \rightarrow 0$ when $T \rightarrow 1$

BELLE Collaboration, R. Seidl et al., Phys. Rev. D99 (2019), no. 11 112006

Phenomenological results – T dependence

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

$$\frac{d\sigma}{dz \, dT \, d^2 \vec{P}_T} = \left. \frac{d\sigma^{\text{res.}}}{dz \, dT \, d^2 \vec{P}_T} \right|_{T-T_0} f_{\text{NP}}(1-T)$$

Fit A					
$\chi^2/{ m d.o.f.}$	1.0749				
z_0	$0.5335\substack{+0.0194\\-0.0180}$				
α	$0.3403\substack{+0.0114\\-0.0122}$				
g_0	$0.1044\substack{+0.0446\\-0.0742}$				
eta	$1.6765\substack{+0.8150\\-0.8150}$				
T_0	$0.0617\substack{+0.0295\\-0.0134}$				
ho	$7.7205\substack{+0.2834\\-0.2099}$				

Fit B				
$\chi^2/{ m d.o.f.}$	1.3421			
z_0	$0.5334\substack{+0.0192\\-0.0189}$			
α	$0.3394\substack{+0.0127\\-0.0134}$			
g_0	$0.1205\substack{+0.0305\\-0.0367}$			
β	$2.0610\substack{+2.1042\\-0.5193}$			
T_0	$0.0467\substack{+0.0117\\-0.0077}$			
ρ	$8.1643^{+0.3053}_{-0.3011}$			

BELLE Collaboration, R. Seidl et al., Phys. Rev. D99 (2019), no. 11 112006

Phenomenological results –T dependence

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

Thrust distributions at fixed values of z and PT

BELLE Collaboration, R. Seidl et al., Phys. Rev. D99 (2019), no. 11 112006

+0.0117

-0.0077

Phenomenological results

M. Boglione, A. Simonelli, 2306.02937 [hep-ph]

Extraction of the unpolarized TMD FF for different values of z and Q

up/down quark into a charged pion

The TMD FF becomes broader with a less pronounced peak For increasing values of z, as indicated by experimental data

Conclusions

- We have achieved the first rigorous (and successful) description of the thrust dependence of the e⁺e⁻ → hX cross section, accompanied by an optimal description of the z and P_T profiles.
- The riddle about different factorization theorems obtained in SCET studies has been solved.
- Models to account for the non-perturbative z and P_T behaviours are devised with special attention to experimental data
- The non perturbative parametrization of the Collins-Soper kernel are modeled according to recent theoretical studies (for example, g_K behaves as a constant at large b_T)
- Future studies will address the relation between the TMD fragmentation function extracted in $e^+e^- \rightarrow hX$ and the analogous function emerging from SIDIS and $e^+e^- \rightarrow h_2 h_1 X$ (study of the soft model M_s)

Outlook

$$\mathbf{I}. e^+ e^- \to h X$$

Extraction of the unpolarized TMD FF, D*, for charged pions from BELLE data (using factorization definition)

2. $e^+ e^- \rightarrow h_1 h_2 X$ Two non-perturbative functions: D*, known from step 1 Soft Model M_s, obtained as ratio: $M_S = D/D^*$

з. *SIDIS*

Three non-perturbative functions in the cross section D*, known from step 1. Soft Model M_s , known from step 2.

Extraction of the TMD PDF, F* (in the factorization definition, $F^* \neq F$).

Back up slides

Old pheno results

Soft Gluon contribution

Soft Gluon Factor:

Double hadron production

Non-Perturbative contribution

Evenly shared by the TMDs

Soft Gluons

Soft Gluon Factor:

- Perturbative contribution
- The TMD FF* is free from any soft gluon contributions

 $D(P_T)$ and $D^*(P_T)$ are different, BUT the relation between D and D* is known!

We can perform combined analyses and disentangle non-perturbative terms.

Rapidity divergencies and thrust in Region 2

ISSUES FROM TREATMENT OF RAPIDITY DIVERGENCES

- Peculiar interplay between soft and collinear contributions ⇒ some of the rapidity divergences are naturally regulated by the thrust, T, but those associated to strictly TMD parts of the cross section need an extra artificial regulator, which is a rapidity cut- off.
- This induces a redundancy, which generates an additional relation between the regulator, the transverse momentum and thrust.
- This relation inevitably spoils the picture in which the cross section factorizes into the convolution of a partonic cross section (encoding the whole T dependence) with a TMD FF (which encapsulates the whole P_T dependence).
- Thrust resummation is intertwined with the transverse momentum dependence, making the treatment of the large T behavior highly non-trivial.
- A proper phenomenological analysis of Region 2 must rely on a factorized cross section where the regularization of rapidity divergences is properly taken into ac- count. All difficulties encountered in the theoretical treatment get magnified in the phenomenological applications.
- In our previous analysis we adopted some approximations, in order to simplify the structure of the factorization theorem without altering its main architecture.
- In this new analysis we relax these approximations and achieve a full resummation of the thrust dependence of the SIA cross section

The $e^+e^- \to hX$ process

The cross section is differential in:

Jι