TMDs global fits by the MAP Collaboration

Lorenzo Rossi

Istituto Nazionale di Fisica Nucleare

- **MAP Collaboration**
 - **June 7th**

Results obtained with contribution from:

Alessandro Bacchetta

Andrea Signori

Giuseppe Bozzi

Marco Radici

Valerio Bertone

Fulvio Piacenza

Matteo Cerutti

Chiara Bissolotti

Simone Venturini

photon

$$F_{UU,T}(x \, . \, z; \mu_F, \mathbf{P}_{hT}^2, Q^2) = x \sum_a H_{UU,T}^a (Q^2, \mu^2) \int d^2$$

$$+Y_{UU,T}(Q^2,\mathbf{P}_{hT}^2)+\mathcal{O}(M^2)$$

$J^2 \mathbf{k}_{\perp} \mathbf{d}^2 \mathbf{P}_{\perp} f_1^{\mathbf{a}}(x, \mathbf{k}_{\perp}^2; \mu^2) D_1^{\mathbf{a} \to \mathbf{h}}(z, \mathbf{P}_{\perp}^2; \mu^2) \delta^{(2)}(z\mathbf{k}_{\perp} - \mathbf{P}_{hT} + \mathbf{P}_{\perp})$

$^{2}/Q^{2})$

W Term

$$+Y_{UU,T}(Q^2, \mathbf{P}_{hT}^2) + \mathcal{O}(M^2)$$

$^{2}/Q^{2})$

W Term

 $+Y_{UU,T}(Q^2, \mathbf{P}_{hT}^2) + \mathcal{O}(M^2)$

$$^{2}/Q^{2})$$

W Term

• The <u>W term</u> dominates in the region where $q_T \ll Q$

$$^{2}/Q^{2})$$

• The <u>W term</u> dominates in the region where $q_T \ll Q$

- The Y term has been excluded in the MAP analysis

photon

TMDs in imapct space to avoid convolutions

TMD Factorization - Drell Yan process

$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}^{2}, Q^{2}) = \sum H_{UU}^{1a}(Q^{2}, \mu^{2}) \int d^{2}\mathbf{k}_{\perp A} d^{2}\mathbf{k}_{\perp B} f_{1}^{\bar{a}}(x_{A}, \mathbf{k}_{\perp A}, \mu^{2}) f_{1}^{a}(x_{B}, \mathbf{k}_{\perp B}, \mu^{2}) \delta^{(2)}(\mathbf{k}_{\perp A} + \mathbf{k}_{\perp B} - \mathbf{q}_{T})$

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

TMD Factorization - Drell Yan process

$$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}^{2}, Q^{2}) = \sum_{a} H_{UU}^{1a}(Q^{2}, \mu^{2}) \int d^{2}\mathbf{k}_{\perp A} d^{2}\mathbf{k}_{\perp B} f_{1}^{\bar{a}}(x_{A}, \mathbf{k}_{\perp A}, \mu^{2}) f_{1}^{a}(x_{B}, \mathbf{k}_{\perp A}, \mu^{2}) \int db_{T} f_{1}^{\bar{a}}(x_{A}, \mathbf{k}_{\perp A}, \mu^{2}) f_{1}^{a}(x_{B}, \mathbf{k}_{\perp B}, \mu^{2}) \delta^{(2)}(\mathbf{k}_{\perp A} + \mathbf{k}_{\perp B} - \mathbf{q}_{T})$$

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

 $(\mathbf{k}_{\perp B}, \mu^2) \delta^{(2)} (\mathbf{k}_{\perp A} + \mathbf{k}_{\perp B} - \mathbf{q}_T)$

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

$$_{B}, \mu^{2})\delta^{(2)}(\mathbf{k}_{\perp A} + \mathbf{k}_{\perp B} - \mathbf{q}_{T})$$

$\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

 $\hat{f}_{1}^{q}(x_{B}, \mathbf{b}_{T}; \mu_{F}, \zeta_{F}) = \mathbb{C} \otimes f_{1}](x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{L}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$

 $\times \left(\frac{\zeta}{\mu^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{O_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$

Matching coeff. (perturbative calculable)

 $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_h^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{-\zeta}{\zeta}\right]$

Collins, "Foundations of Perturbative QCD"

Collinear PDFs (previous fit)

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

Matching coeff. (perturbative calculable)

Collins-Soper kernel

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Orders in powers of α_S

Accuracy	H and C	K and γ_F	γκ	PDFs/FFs and <i>as</i> evol.	
LL	0	-	1	-	
NLL	0	1	2	LO	
NLL'	1	1	2	NLO	
NNLL	1	2	3	NLO	
NNLL'	2	2	3	NNLO	
N ³ LL ⁻	2	3	4	NNLO + NLO	
N ³ LL	2	3	4	NNLO	
N ³ LL'	3	3	4	N³LO	

Orders in powers of α_S

Accuracy	H and C	K and γ_F	γκ	PDFs/FFs and <i>as</i> evol.	
LL	0	-	1	-	
NLL	0	1	2	LO	
NLL'	1	1	2	NLO	
NNLL	1	2	3	NLO	
NNLL'	2	2	3	NNLO	
N ³ LL	2	3	4	NNLO + NLO	
N ³ LL	2	3	4	NNLO	
N ³ LL'	3	3	4	N³LO	

Orders in powers of α_S

Accuracy	H and C	K and γ_F	Ϋκ	PDFs/FFs and <i>as</i> evol.	
LL	0	-	1	_	
NLL	0	1	2	LO	
NLL'	1	1	2	NLO	
NNLL	1	2	3	NLO	
NNLL'	2	2	3	NNLO	
N ³ LL [–]	2	3	4	NNLO + NLO	
N ³ LL	2	3	4	NNLO	
N ³ LL'	3	3	4	N³LO	

Collinear fragmentation functions available beyond NLO only recently

A new global fit: MAPTMD22

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 arXiv:1703.10157	NLL _				8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL				1039	1.06
MAPTMD22	N ³ LL–				2031	1.06

MAP Collaboration, JHEP 10 (2022)

MAP Collaboration, JHEP 10 (2022)

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

MAP Collaboration, JHEP 10 (2022)

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻
- **Normalization** of SIDIS multiplicities beyond NLL

MAP Collaboration, JHEP 10 (2022)

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻
- **Normalization** of SIDIS multiplicities beyond NLL
- Number of fitted parameters: 21

MAP Collaboration, JHEP 10 (2022)

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻
- **Normalization** of SIDIS multiplicities beyond NLL
- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

MAP Collaboration, JHEP 10 (2022)

MAPTMD22: datasets included

MAPTMD22: datasets included

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

MAPTMD22: datasets included

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

MAPTMD22: datasets included

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

HERMES data COMPASS data

MAPTMD22: datasets included

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

HERMES data COMPASS data

MAPTMD22: datasets included

Fixed-target low-energy DY

LHC and Tevatron data

HERMES data **COMPASS** data

Total: 2031 fitted points

 $f_{1NP}(x, b_T^2) \propto F.T. \text{ of } \left(e^{-\frac{k_{\perp}^2}{g_{1A}}} + \lambda_B k_{\perp}^2 e^{-\frac{k_{\perp}^2}{g_{1B}}} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}} \right)$

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$ $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k \right)$ D $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

$$k_{\perp}^{2}e^{-rac{k_{\perp}^{2}}{g_{1B}}} + \lambda_{C}e^{-rac{k_{\perp}^{2}}{g_{1C}}}$$

 $D_{1NP}(x, b_{T}^{2}) \propto F.T. \text{ of } \left(e^{-rac{P_{\perp}^{2}}{g_{3A}}} + \lambda_{FB}k_{\perp}^{2}e^{-rac{P_{\perp}^{2}}{g_{3B}}}\right)$

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k \right)$ D $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

$$k_{\perp}^{2}e^{-\frac{k_{\perp}^{2}}{g_{1}B}} + \lambda_{C}e^{-\frac{k_{\perp}^{2}}{g_{1}C}})$$

$$D_{1NP}(x, b_{T}^{2}) \propto F.T. \text{ of } \left(e^{-\frac{P_{\perp}^{2}}{g_{3}A}} + \lambda_{FB}k_{\perp}^{2}e^{-\frac{P_{\perp}^{2}}{g_{3}B}}\right)$$

$$g_{3}(z) = N_{3}\frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$D_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \qquad g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}}$$

$$g_K(b_T^2) = -g_2^2 \frac{b_T^2}{4}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$D_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \qquad g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}}$$

$$g_K(b_T^2) = -g_2^2 \frac{b_T^2}{4}$$

11 parameters for TMD PDF + 1 for NP evolution + 9 for TMD FF = 21 free parameters

High Energy Drell-Yan

High Energy Drell-Yan

The description improves at high orders

MAPTMD22: Normalization of SIDIS <u>SIDIS</u>

High Energy Drell-Yan

The description improves at high orders

HERMES

Strange behaviors at higher orders

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

Data/Prediction

COMPASS multiplicities (one of many bins)

For different orders the discrepancy amounts to a nearly <u>constant</u> factor

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|$

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|$

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dx dQ dz

Khalek, Bertone, Nocera, arXiv: 2105.08725

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ \overline{dxdQdz}

Khalek, Bertone, Nocera, arXiv: 2105.08725

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section $\frac{d\sigma}{dxdQdz}$

 $\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} = \frac{d\sigma}{dx dQ dz}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

 $\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} = \frac{d\sigma}{dx dQ dz}$

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} / \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

 $\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} = \frac{d\sigma}{dx dQ dz}$

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

 $\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} = \frac{d\sigma}{dx dQ dz}$

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

Fitting parameters independent

FEI

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ_{λ}^2/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

FER

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ^2_λ/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

FER

TEVATRON

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ^2_λ/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

TEVATRON

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ_{λ}^2/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

TEVATRON

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ_{λ}^2/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

MAPTMD22 – Results of the fit $\chi^2/N_{data} = 1.06$ **TEVATRON**

Data set	$N_{\rm dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	1.86	0.2	2.06
DY fixed-target total	233	0.85	0.4	1.24
SIDIS total	1547	0.59	0.28	0.87
Total	2031	0.77	0.29	1.06

MAPTMD22 – Results of the fit $\chi^2/N_{data} = 1.06$ **TEVATRON**

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ_{λ}^2/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

MAPTMD22 – Results of the fit $\chi^2/N_{data} = 1.06$ **TEVATRON**

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	χ_{λ}^2/N
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

Visualization of TMD PDFs

Visualization of TMD PDFs

Visualization of TMD PDFs

Visualization of TMD FFs

Visualization of TMD FFs

Visualization of TMD FFs

Impact studies

ELECTRON ION COLLIDER

26

ELECTRON ION COLLIDER

JEFFERSON LAB 20+

Impact studies - JLab 20+

Better constrain at high x and low Q

A new global fit: MAPTMD22

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 arXiv:1703.10157	NLL _				8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL				1039	1.06
MAPTMD22	N ³ LL–				2031	1.06

MAP Collaboration, JHEP 10 (2022)

A new global fit: MAPTMD22

MAP Collaboration, JHEP 10 (2022)

			2031	1.06
hadro	ons?		1039	1.06
dthe			8059	1.55
DY	Z production	N	l of points	χ²/N _{data}

	Accuracy	DY	N of points	χ²/N _{data}
Wang et al, 2017 arXiv:1707.05207	NLL		96	1.61
VPion 2019 <u>arXiv:1907.10356</u>	$N^2 L L'$		80	1.44
MAPTMDPion22	N ³ LL ⁻		138	1.54
Jam 2023 arXiv:2302.01192	N^2LL		93	1.37

	Accuracy	DY	N of points	χ²/N _{data}
Wang et al, 2017 arXiv:1707.05207	NLL		96	1.61
VPion 2019 <u>arXiv:1907.10356</u>	N^2LL'		80	1.44
MAPTMDPion22	N ³ LL ⁻		138	1.54
Jam 2023 arXiv:2302.01192	N^2LL		93	1.37

	Accuracy	DY	N of points	χ²/N _{data}
Wang et al, 2017 arXiv:1707.05207	NLL		96	1.61
VPion 2019 <u>arXiv:1907.10356</u>	N^2LL'		80	1.44
MAPTMDPion22	N ³ LL ⁻		138	1.54
Jam 2023 arXiv:2302.01192	N^2LL		93	1.37

	Accuracy	DY	N of points	χ²/N _{data}
Wang et al, 2017 arXiv:1707.05207	NLL		96	1.61
VPion 2019 <u>arXiv:1907.10356</u>	N^2LL'		80	1.44
MAPTMDPion22	N ³ LL ⁻		138	1.54
Jam 2023 arXiv:2302.01192	N^2LL		93	1.37

Pion-induced Drell-Yan process

Pion-induced Drell-Yan process

Pion-induced Drell-Yan process

Experiment	$\sqrt{s} [\text{GeV}]$	Q [GeV]	N_{bins}	x_F	
E615 (Q-diff)	21.8	4.05 < Q < 13.05	10(8)	$0 < x_F < 1$	W. J. Stirling et al. 1993
E537 (Q-diff)	15.3	4.0 < Q < 9.0	10	$-0.1 < x_F < 1$	E. Anassontzis et al. 1988

Experiment	Number of points	Statistical errors	Systematic errors	Theoretical errors
E615 (Q-diff)	74/155	5%	16%	5-8%
E537 (Q-diff)	64/150	15-20%	8%	5-8%
Total	138/305	Large Uncertainties	Large Normalization Errors	Extra uncertainties

Experiment	Number of points	Statistical errors	Systematic errors	Theoretical errors
E615 (Q-diff)	74/155	5%	16%	5-8%
E537 (Q-diff)	64/150	15-20%	8%	5-8%
Total	138/305	Large Uncertainties	Large Normalization Errors	Extra uncertainties

Presence of many and different kind of errors

Pion

MAPTMDPion22: Models

MAPTMDPion22: Models

 $g_{1\pi}(x)$

MAPTMDPion22: Models

$$) = N_{1\pi} \frac{x^{\sigma_{\pi}} (1-x)^{\alpha_{\pi}}}{\hat{x}^{\sigma_{\pi}} (1-\hat{x})^{\alpha_{\pi}^{2}}}$$

Proton

 $g_{1\pi}(x)$

MAPTMDPion22: Models

$$) = N_{1\pi} \frac{x^{\sigma_{\pi}} (1-x)^{\alpha_{\pi}^{2}}}{\hat{x}^{\sigma_{\pi}} (1-\hat{x})^{\alpha_{\pi}^{2}}}$$

MAPTMDPion22: Fit Results

MAP Collaboration, PRD 107 (2023)

MAPTMDPion22: Fit Results

MAP Collaboration, PRD 107 (2023)

MAP Collaboration, PRD 107 (2023)

Visualization of Pion TMD PDFs

 $N_{1\pi}[\text{GeV}^2] = 0.47 \pm 0.12$ $\sigma_{\pi} =$

 $\sigma_{\pi} = 4.50 \pm 2.25$

 $\alpha_{\pi} = 4.40 \pm 1.34$

Visualization of Pion TMD PDFs

 $N_{1\pi}[\text{GeV}^2] = 0.47 \pm 0.12$ $\sigma_{\pi} =$

 $\sigma_{\pi} = 4.50 \pm 2.25$

 $\alpha_{\pi} = 4.40 \pm 1.34$

 $N_{1\pi}[\text{GeV}^2] = 0.47 \pm 0.12$

 $N_{1\pi}[\text{GeV}^2] = 0.47 \pm 0.12$

 $N_{1\pi}[\text{GeV}^2] = 0.47 \pm 0.12$

MAPTMD22 is the most recent e the PROTON from a global fit

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in

 MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit

 MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit

 MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan

Normalization of SIDIS beyond NLL

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan

- Normalization of SIDIS beyond *NLL*
- Effect of power corrections

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan

- Normalization of SIDIS beyond *NLL*
- Effect of power corrections
- Flavour Dependence

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan

- Normalization of SIDIS beyond *NLL*
- Effect of power corrections
- Flavour Dependence

Refinement of Pion TMDs (COMPASS data, Power corrections, PRV model)

