Polarised physics at the LHC: the L $\underset{\text { spin }}{+} C$ project

Pasquale Di Nezza

SAR Mop
 2023

Collisions provided by a TeV-scale beam (LHC) on fixed target will exploit a unique kinematic region poorly probed. Advanced detectors make available probes never accessed before

The only possibility to have polarised collisions is through a polarised fixed-target

Collisions provided by a TeV-scale beam (LHC) on fixed target will exploit a unique kinematic region poorly probed. Advanced detectors make available probes never accessed before

The LHCb detector

- LHCb is a general-purpose forward spectrometer, fully instrumented in $2<\eta<5$, and optimised for c and b hadron detection
- Excellent momentum resolution with VELO + tracking stations:

$$
\sigma_{p} / p=0.5-1.0 \%(p \in[2,200] \mathrm{GeV})
$$

- Particle identification with RICH+CALO+MUON
$\epsilon_{\mu} \sim 98 \%$ with $\epsilon_{\pi \rightarrow \mu} \lesssim 1 \%$
- Low momentum muon trigger:

$$
p_{T_{\mu}}>1.75 \mathrm{GeV}(2018)
$$

will be reduced thanks to the new fullysoftware trigger

- Major detector upgrades performed during LS2 for the Run 3 (5x luminosity)

pp or pA collisions: 0.45-7 TeV beam on fix target

$$
\begin{aligned}
& \sqrt{s}=\sqrt{2 m_{N} E_{p}} \simeq 41-115 \mathrm{GeV} \\
& y_{C M S}=0 \rightarrow y_{l a b}=4.8
\end{aligned}
$$

AA collisions: 2.76 TeV beam on fix target

$$
\sqrt{s_{N N}} \simeq 72 \mathrm{GeV}
$$

1: beam; 2: target

Large CM boost, large x_{2} values ($\mathrm{x}_{\mathrm{F}}<0$) and small x_{1}

$$
y_{C M S}=0 \rightarrow y_{l a b}=4.3
$$

$$
\gamma=\frac{\sqrt{s_{N N}}}{2 m_{p}} \simeq 60
$$

Broad and poorly explored
kinematic range
mid-to-large $\boldsymbol{x}_{\mathrm{Bj}}$ at intermediate $\boldsymbol{Q}^{\mathbf{2}}$ and negative \boldsymbol{x}_{F}

SMOG2 an unpolarised target at LHCh

Openable cell

5 mm radius $\times 200 \mathrm{~mm}$ length

UNpolarised target (beam-gas)

SMOG2

It is the only system present in the LHC primary vacuum

SMOG2

It is the only system present in the LHC primary vacuum

SMOG2

It is the only system present in the LHC primary vacuum

SMOG2

- The system is completely installed (storage cell + GFS + triggers + reconstruction)
- Negligible impact on the beam lifetime ($\tau_{\text {beam-gas }}^{\mathrm{p}-\mathrm{H}_{2}} \sim 2000$ days , $\tau_{\text {beam-gas }}^{\mathrm{Pb}-\mathrm{Ar}} \sim 500 \mathrm{~h}$)

- Injectable gases (3+1 reservoirs): $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$
- Flux known with 1% precision, measured relative contamination 10-4

UPGRADE SMOGZ

https://cds.cern.ch/record/2673690/

SMOG2 works!

we are able to reconstruct 2 well separated and independent Interaction Points

SMOG2 works!

we are able to reconstruct 2 well separated and independent Interaction Points

SMOG 2 works!

SMOG2 works!

LHCb-FIGURE-2023-008
in ~ 10 ' of data taking

SMOG2 works!

in ~ 10 ' of data taking

LHCb is the only experiment able to run in collider and fixed-target mode simultaneously!

SMOG2 ... few highlights

Heavy-lon and QCD phase space

Astroparticle (DM and CR)

SMOG2 is not only a unique project itself, but also a great playground for $L \underset{\psi_{\text {spin }}}{C}$
$L \underset{\text { spin }}{C}$ a polarised target at LHCb
SMOG2 is not only a unique project itself,

$$
\text { but also a great playground for } L \underset{\Downarrow_{\text {spin }}}{C}
$$

Successful technology based on HERA and COSY experiments

Challenge: develop a new generation of polarized targets

LHCspin experimental setup

$$
\text { Target density }(\mathrm{H})=7 \times 10^{13} \mathrm{~cm}^{-2}
$$

$$
\text { LHC beam }(\text { Run } 4)=6.8 \times 10^{18} \mathrm{p} \mathrm{~s}^{-1}
$$

$$
L_{\mathrm{pH}}=8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-2}
$$

Space available in front of LHCb

PGT implementation into LHCb

- Cylindrical target cell with SMOG2 dimensions: $L=20 \mathrm{~cm}$ and $D=1 \mathrm{~cm}$
- Full LHCb simulations show broader kinematic acceptance \& higher efficiency in the same position of the SMOG2 cell

ABS \& BRP IN VERTICAL LAYOUT - SIDE VIEW

PGT implementation into LHCb

- Inject polarised gas via $A B S$ and unpolarised gas via UGFS

- Compact dipole magnet \rightarrow static transverse field
- Superconductive coils + iron yoke configuration fits the space constraints
- $B=300 \mathrm{mT}$ with polarity inversion, $\Delta B / B \simeq 10 \%$, suitable to avoid beam-induced depolarisation [PoS (SPIN2018)]

Possibility to switch to a solenoid and provide longitudinal polarisation (e.g. in LHC Run 5)

Role of the storage cell coating

high SEY
Fig. 2. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys. J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Bunch spacing (e.g. 25 ns)
The material of the cell walls must have a low Secondary Electron Yield (e-cloud) As for SMOG2, Amorphous Carbon is ok. Has it a low H recombination as well?

Role of the storage cell coating

Fig. 2. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys. J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Bunch spacing (e.g. 25 ns)
The material of the cell walls must have a low Secondary Electron Yield (e-cloud) As for SMOG2, Amorphous Carbon is ok. Has it a low H recombination as well?

Eley-Rideal Mechanism

Role of the storage cell coating

Fig. 2. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys. J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Bunch spacing (e.g. 25 ns)
The material of the cell walls must have a low Secondary Electron Yield (e-cloud) As for SMOG2, Amorphous Carbon is ok. Has it a low H recombination as well?

Eley-Rideal Mechanism

Role of the storage cell coating

Fig. 2. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys. J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Bunch spacing (e.g. 25 ns)
The material of the cell walls must have a low Secondary Electron Yield (e-cloud) As for SMOG2, Amorphous Carbon is ok. Has it a low H recombination as well?

Eley-Rideal Mechanism

$$
P_{m}=0.5 \mathrm{P}_{\mathrm{a}}
$$

Role of the storage cell coating

J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Studies ongoing in order to understand if carbon films with low secondary Electron Yield cope with the required "recombination' rate of polarized H atoms injected in the storage cell

... or follow the HERMES experience to have an ice coating
(low SEY, low H recombination)

Backup solution is also being investigated: a jet target that provides lower density ($\sim 10^{12}$ atoms $/ \mathrm{cm}^{2}$) but higher polarisation degree (up to 90\%) and lower systematics

The material of the cell walls must have a low Secondary Electron Yield (e-cloud)
As for SMOG2, Amorphous Carbon is ok. Has it a low H recombination as well?

The jet target option

Alternative solution with jet target also under evaluation:

- lower density ($\sim 10^{12}$ atoms $/ \mathrm{cm}^{2}$)
- higher polarization (up to 90%)
- lower systematics in P measurement (virtually close to 0)

The LHC Interaction Region 3

IR3 is a great opportunity to perform R\&D on beam ... and not only:

IR3 is a great opportunity to perform R\&D on beam ... and not only:

 -develop a new target system starting from an existing system
IR3 is a great opportunity to perform R\&D on beam ... and not only:

-develop a new target system starting from an existing system
-study the beam-polarised target mutual interaction (Beam Induced Depolarisation, Impedance, Coating, Recombination, SEY, ...)

IR3 is a great opportunity to perform R\&D on beam ... and not only:

 -develop a new target system starting from an existing system-study the beam-polarised target mutual interaction (Beam Induced Depolarisation, Impedance, Coating, Recombination, SEY, ...)
-develop a new polarimeter

> DEVELOPMENT OF SPIN ROTATOR AND AN ABSOLUTE POLARIMETER FOR POLARIZED He-3 AT BNL*
> $\begin{aligned} & \text { D. Raparia*, G. Atoian, S. Ikeda, R. Lambliase, M. Okamura, A. Poblaguev, J. Ritter, S. Trabocchi, } \\ & \text { A. Zelenski, Brookhaven National Laboratory, PO Box } 5000\end{aligned}$
> A. Raparia, Zelenski, Brookhaven National Laboratory, PO Box 5000 , Upton, NY 11974
> A. Z. Aetenski, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11974

IR3 is a great opportunity to perform R\&D on beam ... and not only:

 -develop a new target system starting from an existing system-study the beam-polarised target mutual interaction (Beam Induced Depolarisation, Impedance, Coating, Recombination, SEY, ...)
-develop a new polarimeter -perform basic physics measurements

> DEVELOPMENT OF SPIN ROTATOR AND AN ABSOLUTE POLARIMETER FOR POLARIZED He-3 AT BNL*
> D. Raparia\#, G. Atoian, S. Ikeda, R. Lambliase, M. Okamura, A. Poblaguev, J. Ritter, S. Trabocchi,
> A. Zelenski, Brookhaven National Laboratory, PO Box 5000 , Upton, NY 11974
> A. Zelenski, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11974
-create a CERN pool for polarised physics (as in the past)

IR3 is a great opportunity to perform R\&D on beam ... and not only:

 -develop a new target system starting from an existing system-study the beam-polarised target mutual interaction (Beam Induced Depolarisation, Impedance, Coating, Recombination, SEY, ...)
-develop a new polarimeter -perform basic physics measurements

> DEVELOPMENT OF SPIN ROTATOR AND AN ABSOLUTE POLARIMETER FOR POLARIZED He-3 AT BNL ${ }^{*}$
> D. Raparia*, G. Atoian, S. Ikeda, R. Lambliase, M. Okamura, A. Poblaguev, J. Ritter, S. Trabocchi,
> $\begin{aligned} & \text { D. Raparia, G. Atoian, Sr Ikeda, R. Lambliase, M. Okamura, A. Poblaguev, J. Ritter, S. T } \\ & \text { A. Zelenski, Brookhaven National Laboratory, PO Box } 5000 \text {, Upton, NY } 11974\end{aligned}$
> A. Zelenski, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11974
-create a CERN pool for polarised physics (as in the past)
-allow people/groups to join even if not officially in LHCb

IR3 is a low radiation area (like a normal LHC-IP)
Investigation and discussions with LHC experts are ongoing

Sector valve to isolate the region

The available target system is a good starting point ...

The physics goals of $L \underset{\text { spin }}{C} \ldots$ just a quick overview

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Measure exclusive processes to access GPDs

Quark TMDs

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transv. polarized Drell-Yan

- Sensitive to quark TMDs through TSSAs

$$
A_{N}^{D Y}=\frac{1}{P} \frac{\sigma_{D Y}^{\uparrow}-\sigma_{D Y}^{\downarrow}}{\sigma_{D Y}^{\uparrow}+\sigma_{D Y}^{\downarrow}} \Rightarrow \quad A_{U T}^{\sin \phi s} \sim \frac{f_{1}^{q} \otimes f_{1 T}^{\perp q}}{f_{1}^{q} \otimes f_{1}^{q}}, A_{U T}^{\sin \left(2 \phi-\phi_{s}\right)} \sim \frac{h_{1}^{\perp q} \otimes h_{1}^{q}}{f_{1}^{q} \otimes f_{1}^{q}}, \ldots
$$

$$
\text { (} \phi \text { : azimuthal orientation of lepton pair in dilepton } \mathrm{CM} \text {) }
$$

LHCb has excellent μ-ID \& reconstruction for $\mu^{+} \mu^{-}$
dominant: $\bar{q}\left(x_{\text {beam }}\right)+q\left(x_{\text {target }}\right) \rightarrow \mu^{+} \mu^{-}$ suppressed: $q\left(x_{\text {beam }}\right)+\bar{q}\left(x_{\text {target }}\right) \rightarrow \mu^{+} \mu^{-}$

- Extraction of qTMDs does not require knowledge of FF
- Verify sign change of Sivers function wrt SIDIS $\left.f_{1 T}^{1}\right|_{D Y}=-\left.f_{1 T}^{1}\right|_{\text {SIDIS }}$
- Test flavour sensitivity using both H and D targets

Gluon TMDs

Theory framework well consolidated, but experimental access still extremely limited

gluon pol.				
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		U	Circularly	Linearly
	U	f_{1}^{g}		$h_{1}^{\perp g}$
	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables. At LHC heavy quarks are produced by the dominant gg fusion
 process

Inclusive quarkonia production in (un)polarized pp interaction turns out to be an ideal observable to access gTMDs

TMD factorisation requires $q_{T}(Q) \ll M_{Q}$:

- Can look at associate quarkonia production, where only relative q_{T} needs to be small (e.g. $\left.p p^{(\uparrow)} \rightarrow J / \Psi+J / \Psi+X\right)$
- Due to the large masses, easier in case of bottomonium where factorisation can hold at large q_{T}

Gluon TMDs

Theory framework well consolidated, but experimental access still extremely limited

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables.
At IHC heavv auarks are nroduced bv the dominant acfusion

Gluon-induced asymmetries
(unconstrained $h_{1}^{\perp g}+f_{1}^{g}$) accessible by, e.g., $d i-J / \Psi$ or Υ production

Probing the Sivers function

Can be accessed through the Fourier decomposition of the TSSAs for inclusive meson production

$$
\left.A_{N}=\frac{1 \sigma^{\uparrow}-\sigma^{\downarrow}}{P} \propto\left[\begin{array}{l}
\sigma_{1 T}^{\perp g}+\sigma^{\downarrow} \\
f_{a}, k_{\perp a}
\end{array}\right) \otimes f_{g}\left(x_{b}, k_{\perp b}\right) \otimes d \sigma_{g g \rightarrow Q Q g}\right] \sin \phi_{S}+\cdots
$$

Sensitive to color exchange among IS and FS, and gluon OAM
Shed light on spin-orbit correlation of unpolarized gluons inside a transversely polarized proton

LHCspin event rates

Precise spin asymmetry on $J / \Psi \rightarrow \mu^{+} \mu^{-}$and $D^{0} \rightarrow K^{-} \pi^{+}$for $p H^{\uparrow}$ collisions in just few weeks with Run3 luminosity! Statistics further enhanced by a factor 3-5 in LHCb upgrade II

[^0]
A TSSA analysis at LHCspin with $J / \Psi \rightarrow \mu^{+} \mu^{-}$events (toy model)

$$
\rho=\frac{1}{2}\left[1+\left(a_{1}+a_{2} \frac{x-\bar{x}}{x_{\max }}+a_{3} \frac{p_{T}-\overline{p_{T}}}{p_{T \max }}\right) \sin \phi+\left(b_{1}+b_{2} \frac{x-\bar{x}}{x_{\max }}+b_{3} \frac{p_{T}-\overline{p_{T}}}{p_{T \max }}\right) \sin 2 \phi\right]
$$

- Full LHCb simulations of $J / \Psi \rightarrow \mu^{+} \mu^{-}$in pH collisions \rightarrow emulate the target polarisation by assigning a $\uparrow \downarrow$ tag according to a given model. In this example: 10% asymmetry on $\sin \phi, 2 \%$ on $\sin 2 \phi+$ mild x_{F}, p_{T} dependence
- Fit the polarised data with the sum of two Fourier amplitudes $\left(a_{1}, a_{2}\right)$ in $4 x_{F} \times 2 p_{T} \times 8 \phi$ bins
- Within this statistics, corresponding to ~ 3 months of data-taking,

Knowledge of the polarisation degree

- To estimate the systematic error due to the measurement of the polarisation degree, the analysis is repeated with different ΔP
- Very relevant for the R\&D (e.g. cell vs jet target). With the shown analysis*:
- 5% error (realistic value) \rightarrow negligible effect
- 20% error $\rightarrow 30-40 \%$ of the stat. error

$$
\Delta P=5 \%
$$

$p_{T}(\mathrm{MeV})$	x_{F}	a_{1}
$[0,1500]$	$[-0.70,-0.09]$	0.089 ± 0.013
$[0,1500]$	$[-0.09,-0.06]$	0.104 ± 0.012
$[0,1500]$	$[-0.06,-0.04]$	0.098 ± 0.013
$[0,1500]$	$[-0.04,0.05]$	0.117 ± 0.014
$[1500,6000]$	$[-0.70,-0.09]$	0.092 ± 0.010
$[1500,6000]$	$[-0.09,-0.06]$	0.108 ± 0.011
$[1500,6000]$	$[-0.06,-0.04]$	0.105 ± 0.012
$[1500,6000]$	$[-0.04,0.05]$	0.105 ± 0.012

$\Delta P=20 \%$

$p_{T}(\mathrm{MeV})$	x_{F}	a_{1}
$[0,1500]$	$[-0.70,-0.09]$	0.087 ± 0.014
$[0,1500]$	$[-0.09,-0.06]$	0.103 ± 0.016
$[0,1500]$	$[-0.06,-0.04]$	0.097 ± 0.016
$[0,1500]$	$[-0.04,0.05]$	0.114 ± 0.017
$[1500,6000]$	$[-0.70,-0.09]$	0.090 ± 0.013
$[1500,6000]$	$[-0.09,-0.06]$	0.108 ± 0.015
$[1500,6000]$	$[-0.06,-0.04]$	0.104 ± 0.015
$[1500,6000]$	$[-0.04,0.05]$	0.102 ± 0.015

- 50\% error \rightarrow syst. dominated

UPC and gGPDs

Accessible already with SMOG2
 for the unpol part

W/ can be accessed at LHC in Ultra-Peripheral collisions (UPC)
 :Recall:
 -barely explored high-хв region -moderate Q²

- Impact parameter larger than sum of radii
- Process dominated by EM interactions
- Gluon distributions probed by pomeron exchange
- Exclusive quarkonia prod. sensitive to gluon GPDs [PRD 85 (2012), 051502]

Timelike Compton scattering (TCS)

LHCspin could allow to access the GPD E^{g} (a key ingredient of the Ji sum rule)

$$
J^{g}=\frac{1}{2} \int_{0}^{1} d x\left(H^{g}(x, \xi, 0)+E^{g}(x, \xi, 0)\right)
$$

J / ψ, total uncertainty on cross section, assuming 4% uncertainty on luminosity

pp	pD	pAr	pKr	pXe
10%	-	5%	5%	5%

(access via angular modulation) hard scale $=$ large $q^{2}\left(\right.$ in practice few GeV^{2})

GPD	U	L	T
U	H		\mathcal{E}_{T}
L		\tilde{H}	\tilde{E}_{T}
T	E	\tilde{E}	H_{T}, \tilde{H}_{T}

3D maps of parton densities in coordinate space

Exclusive meson production hard scale = quark mass

Pbp	PbAr
-	5%

Spin physics in heavy-ion collisions

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

Unpol. deuterons: the fireball is azimuthally symmetric and $\boldsymbol{v}_{\mathbf{2}} \approx \mathbf{0}$. axis, corresponds to $\boldsymbol{v}_{\mathbf{2}}<\mathbf{0}$
$\boldsymbol{j}_{3}= \pm \mathbf{1} \rightarrow$ prolate fireball stretched along the pol.
$\boldsymbol{j}_{3}=\mathbf{0} \rightarrow$ oblate fireball corresponds to $\boldsymbol{v}_{\mathbf{2}}>\mathbf{0}$

International framework and feedback

Several experiments dedicated to spin physics, but with many limitations:
very low energy, no rare probes, no ion beam, ... LHCspin is unique in this respect

LHCspin is complementary to EIC

linearly polarized gluon TMD

	$p p \rightarrow \gamma \gamma X$	$p A \rightarrow \gamma^{*}$ jet X	$e p \rightarrow e^{\prime} Q \bar{Q} X$ $e p \rightarrow e^{\prime} j_{1} j_{2} X$	$p p \rightarrow \eta_{c, b} X$ $p p \rightarrow H X$	$p p \rightarrow J / \psi \gamma X$ $p p \rightarrow \Upsilon \gamma X$
$h_{1}^{\perp g[+,+]}(\mathrm{WW})$	\checkmark	\times	\checkmark	\checkmark	\checkmark
$h_{1}^{\perp g[+,-]}(\mathrm{DP})$	\times	\checkmark	\times	\times	\times

TMDs (Sivers)				[D. Boer: arXiv:1611.06089, D. Boer et al. HEPJ 082016 001]		
	DY	SIDIS	$p^{\dagger} A \rightarrow h X$	$p^{\dagger} A \rightarrow \gamma^{(*)}$ jet X	$\begin{aligned} & p^{\dagger} p \rightarrow \gamma \gamma X \\ & p^{\dagger} p \rightarrow J / \psi \gamma X \\ & p^{\dagger} p \rightarrow J / \psi J / \psi X \\ & \hline \end{aligned}$	$\begin{aligned} & e p^{\dagger} \rightarrow e^{\prime} Q \bar{Q} X \\ & e p^{\dagger} \rightarrow e^{\prime} j_{1} j_{2} X \end{aligned}$
$f_{1 T}^{\perp \text { l }}{ }^{\text {l+,+] }}$ (WW)	\times	\times	\times	\times	\checkmark	\checkmark
$f_{1 T}^{1 g++,-]}(\mathrm{DP})$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times

$f_{1 T}^{\perp g[+,+]}$ (Weizsacker-Williams type or "f-type") \rightarrow antisymmetric colour structures
$f_{1 T}^{\perp g[+,-]}$ (Dipole s type or "d-type") \rightarrow symmetric colour structures
\square Can be measured at the Electron Ion-Collider (EIC)
\square Can be measured at LHCspin
"Ambitious and long term LHC-Fixed Target research program. The efforts of the existing LHC experiments to implement such a programme, including specific R\&D actions on the collider, deserve support" (European Strategy for Particle Physics)
"This would be unique and highly complementary to existing and future measurements in lepton-proton collisions, because the asymmetries in question have a process dependence between pp and lp that is predicted by theorkisfern Physics Beyond Collider)

The polarised physics is very alive and will benefit of complementary probes

The polarised physics is very alive and will benefit of complementary probes

Fixed target physics at LHC is an exciting reality

LHCb 5 SMOG2 already operative and taking unpolarised data

 is an innovative and unique project conceived to bring polarized physics at the LHC. It is extremely ambitious in terms of both physics reach and technical complexity. It could be installed in a realistic time schedule and costs

The polarised physics is very alive and will benefit of complementary probes

Fixed target physics at LHC is an exciting reality

LHCW 5 SMOG2 already operative and taking unpolarised data

 is an innovative and unique project conceived to bring polarized physics at the LHC. It is extremely ambitious in terms of both physics reach and technical complexity. It could be installed in a realistic time schedule and costs

$L \overbrace{\text { spin }}^{C}$ @IR3 has great potentialities for R\&D, early measurements, ... all in a small group of research

[^0]: reconstructed particles

