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JUNO: a next-generation neutrino observatory1

A. Gavrikov 1JUNO Collaboration, PPNP 123, (2022): 103927

● Jiangmen Underground Neutrino 
Observatory (JUNO):

– a 20 kt liquid scintillator (LS) 
detector

– 53 km away from 8 reactor cores
– ~650-meter deep underground
– data taking expected in 2024

● The main goals of JUNO:
– neutrino mass ordering (NMO) 

3𝜎 in ~6 years
– precise measure of oscillation 

parameters
– more in the talk of M. Grassi



  3 / 19

JUNO collaboration

Country Institute Country Institute Country Institute
Armenia Yerevan Physics Institute China SYSU Germany U. Mainz
Belgium Universite libre de Bruxelles China Tsinghua U. Germany U. Tuebingen
Brazil PUC China UCAS Italy INFN Catania
Brazil UEL China USTC Italy INFN di Frascati
Chile PCUC China U. of South China Italy INFN-Ferrara
Chile SAPHIR China Wu Yi U. Italy INFN-Milano
Chile UNAB China Wuhan U. Italy INFN-Milano Bicocca
China BISEE China Xi'an JT U. Italy INFN-Padova
China Beijing Normal U. China Xiamen University Italy INFN-Perugia
China CAGS China Zhengzhou U. Italy INFN-Roma 3
China ChongQing University China NUDT Pakistan PINSTECH (PAEC)
China CIAE China CUG-Beijing Russia INR Moscow
China DGUT China ECUT-Nanchang City Russia JINR
China Guangxi U. China CDUT-Chengdu Russia MSU
China Harbin Institute of Technology Czech Charles U. Slovakia FMPICU
China IHEP Finland University of Jyvaskyla Taiwan-China National Chiao-Tung U.
China Jilin U. France IJCLab Orsay Taiwan-China National Taiwan U.
China Jinan U. France LP2i Bordeaux Taiwan-China National United U.
China Nanjing U. France CPPM Marseille Thailand NARIT
China Nankai U. France IPHC Strasbourg Thailand PPRLCU
China NCEPU France Subatech Nantes Thailand SUT
China Pekin U. Germany RWTH Aachen U. U.K. U. Warwick
China Shandong U. Germany TUM USA UMD-G
China Shanghai JT U. Germany U. Hamburg USA UC Irvine
China IGG-Beijing Germany FZJ-IKP

= 74 institutes

+Observers: University of Liverpool
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JUNO’s central detector
● The central detector:

– the largest liquid scintillator detector: 20 kt
– ~35 m of diameter

● 77.9% photo-coverage by photo-multiplier tubes (PMTs): 

1) 17612 20’’ (LPMT)    2) 25600 3'' (SPMT)

Large statistics

Energy resolution of 3%/√E

● Challenges:
– non-linear energy response
– detector’s spatial non-uniformity
– account for all effects affecting 

the photon emission, propagation
– etc.

● Can Machine Learning (ML) techniques 
help us to solve these issues? 

A. Gavrikov
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Reconstruction chain

Light production in LS Light detection by PMTs PMT waveform reconstruction

Energy reconstruction 

Vertex reconstruction

Charge at PMT

First Hit Time (FHT) at PMT

Further 
analysis

Readout 
electronics

A. Gavrikov



  6 / 19

Reconstruction chain

Light production in LS Light detection by PMTs PMT waveform reconstruction

Energy reconstruction 

Vertex reconstruction

Charge at PMT

First Hit Time (FHT) at PMT

Further 
analysis

Readout 
electronics

A. Gavrikov



  7 / 19

Neutrino detection in JUNO
● electron anti-neutrinos       from the reactor cores
● detected via Inverse Beta Decay (IBD):

●       takes most of the neutrino energy =>
● => it can be calculated as follows:

A. Gavrikov

To ensure resolving NMO:
– energy reconstruction 

with resolution < 3% at 
1 MeV
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 Machine learning in particle physics
● ML methods are used at all levels of data processing in many experiments:

– signal/background discrimination

– event selection in a trigger

– anomaly detection

– particle identification, etc.

● Why is ML useful for particle physics?

– Faster. More precisely, with proper training

– Adequate for many purposes simultaneously: event simulation, analysis, reconstruction, 
identification, etc.

– GPU friendly by construction, which is important for big data processing

● Drawbacks:

– models are trained on simulation data – MC vs. real data discrepancy

– stability, reliability & interpretability
A. Gavrikov
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 Machine learning for IBDs in JUNO

energy & vertex reconstruction

A. Gavrikov

Event level

PMT waveform reconstruction

Single channel level
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PMT waveform reconstruction with ML1

● Simulation waveforms with known nPEs

● Classification: photon counting 

● 10 classes: {0, 1, 2, …, 9} p.e.

● ~1 million of waveforms per class

● the categorical crossing-entropy as a loss 
function

● ML approach: 

– 1D waveform as input

– 1D Convolutional
Neural Network (CNN)

A. Gavrikov 1G. Huang, TAUP 2023 Truth [p. e.]
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 Machine learning for IBDs in JUNO

energy & vertex reconstruction

A. Gavrikov

Event level

PMT waveform reconstruction

Single channel level
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Datasets
● Two datasets: for training and for testing

● Data description:
– positron events
– uniformly spread in the volume of the central detector
– Ekin ∈ [0, 10] MeV. Edep = Ekin + 1.022 MeV

A. Gavrikov

● Full detector and electronics simulation1

1T. Lin et al. EPJ C 83, 382 (2023)

● Testing dataset:
– subsets with discrete kinetic 

energies:
– 0, 0.1, 0.3, 0.6, 1, 2, ..., 10 [MeV]
– in total 140k events: each subset 

contains 10k

● Training dataset:
– 5 million events
– uniformly distributed in 

kinetic energy Ekin

Charge at PMT

FHT at PMT
As input for ML models
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Methods

II) resulting in 35224* channels

*only LPMT are used

3) Graph neural networks (GNNs)
1) Aggregated features with 
   Boosted Desicion Trees (BDT)
   Fully connected neural networks (FCDNN) 2) Planar projection with

Convolutional Neural Networks (CNNs)

Complexity of 
the method 

I) charge & FHT at each PMT III) dimensionality reduction needed

IV) different methods to process the signals
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Aggregated features approach1

Aggregate 
information from the 
array of PMTs, using both 
charge and FHT

A. Gavrikov 1A. Gavrikov et al. EPJ C 82, 11 (2022): 1021

~35k channels 

~100 features

Further feature 
selection procedure 
performes with a 
greedy algorithm ~20 features

Result is an input for simple 
models: BDT & FCDNN

FCDNN

BDT
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Planar projections with CNN1

● PMT-wise information as input
● Planar projection for both FHT and charge
● Each PMT as a pixel
● Classical convolution neural network architectures:

– VGG
– ResNet

● Main hyperparameters

● Issues of the planar projection:
– no regular grid can be constructed on the sphere
– stretches or shrinks certain areas => breaking translational invariance
– features that are close on the sphere can be far in the 2D projection

A. Gavrikov

PMT id ChargeFHT

ResNet-J

VGG-J

1 Z. Qian et al. NIMA 1010 (2021): 165527
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Graph neural network1

● Only neighboring pixels i, j have non-
zero weights Wij defined as follows:

● Main hyperparameters

A. Gavrikov

● HEALPix algorithm to divide the surface 
into spherical pixels

● Nside controls the discretization resolution

● Nside set to 16  => 3072 regions

1 Z. Qian et al. NIMA 1010 (2021): 165527
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Results and comparisons1,2,3

● Energy:
– Similar performance of both 

the simple models (aggregated 
features based)

– and the complex ones (GNN 
and CNNs)

– PMT-wise information is not 
essential

– Simple models perform faster
● Vertex:

– The complex models perform 
better

– Signal granularities are 
essential

– PMT-wise information needed

A. Gavrikov

1Z. Qian et al. NIMA 1010 (2021): 165527
2A. Gavrikov, et al. EPJ Web Conf. 251 (2021): 03014
3A. Gavrikov et al. EPJ C 82, 11 (2022): 1021

Energy reconstructionVertex reconstruction
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Conclusions
● JUNO is at the latest stage of its construction

● Many tools are being developed to be prepared for the first data,

including ML techniques

● This talk covered only the part related to reactor anti-neutrinos

● ML shows good and promising results for JUNO

● But still, there are challenges to be addressed:

– adaptation to the real data

– stability and reliability

– interpretability
● Calibration sources data for fine-tuning and to test the models 

A. Gavrikov


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

