

Machine Learning Techniques for the Event Reconstruction: the JUNO Experiment

Arsenii Gavrikov¹ of behalf of the JUNO collaboration

¹The University of Padova + INFN-Padova

JUNO: a next-generation neutrino observatory¹

- Jiangmen Underground Neutrino Observatory (JUNO):
 - a 20 kt liquid scintillator (LS) detector
 - 53 km away from **8 reactor cores**
 - ~650-meter deep underground
 - data taking expected in 2024
- The main goals of JUNO:
 - neutrino mass ordering (NMO)
 3σ in ~6 years
 - precise measure of oscillation parameters $\sin^2 \theta_{12}, \Delta m^2_{21}, \Delta m^2_{31}$
 - more in the talk of M. Grassi

JUNO collaboration

= 74 institutes

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China 🔮	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China	UCAS	Italy	INFN Catania
Brazil	UEL	China	USTC	Italy	INFN di Frascati
Chile	PCUC	China 🛛 🧹	U. of South China	Italy	INFN-Ferrara
Chile 【	SAPHIR	China 🦻	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy 🖉 🤇	INFN-Milano Bicocca
China 🖉	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China 🐂	Beijing Normal U.	China 🧷	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Pakistan 😽	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Warwick
China	Shandong U.	Germany	TUM	USA	UMD-G
China	Shanghai JT U.	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Beijing	Germany	FZJ-IKP		

+Observers: University of Liverpool

JUNO's central detector

- The central detector:
 - the largest liquid scintillator detector: 20 kt
 - ~35 m of diameter
- 77.9% photo-coverage by photo-multiplier tubes (PMTs):

1) 17612 20" (LPMT) 2) 25600 3" (SPMT)

Large statistics

Energy resolution of $3\%/\sqrt{E}$

Challenges:

- non-linear energy response
- detector's spatial non-uniformity
- account for all effects affecting the photon emission, propagation
- etc.
- Can Machine Learning (ML) techniques help us to solve these issues?

Reconstruction chain

Reconstruction chain

Neutrino detection in JUNO

- electron anti-neutrinos $\overline{\nu}_e$ from **the reactor cores** •
- detected via Inverse Beta Decay (IBD): .

$$\overline{\nu}_e + p \to e^+ + n$$

- e^+ takes most of the neutrino energy => •
- => it can be **calculated** as follows: $E_{\tilde{\nu}_e} \approx E_{dep} + 0.8 \text{ MeV}$ •

7/19

with resolution < 3% at

1 MeV

Machine learning in particle physics

 X_1

- ML methods are used at all levels of data processing in many experiments:
 - signal/background discrimination
 - event selection in a trigger
 - anomaly detection
 - particle identification, etc.
- Why is ML **useful** for particle physics?
 - **Faster.** More precisely, with proper training
 - Adequate for many purposes simultaneously: event simulation, analysis, reconstruction, identification, etc.
 - **GPU friendly** by construction, which is important for big data processing
- Drawbacks:

- models are trained on simulation data MC vs. real data discrepancy
- stability, reliability & interpretability

Machine learning for IBDs in JUNO

Single channel level

Event level

PMT waveform reconstruction

energy & vertex reconstruction

Machine learning for IBDs in JUNO

Single channel level

PMT waveform reconstruction

Event level

energy & vertex reconstruction

PMT waveform reconstruction with ML¹

- Simulation waveforms with known nPEs
- Classification: photon counting
- 10 classes: {0, 1, 2, ..., 9} p.e.
- ~1 million of waveforms per class
- the categorical crossing-entropy as a loss function
- ML approach:
 - 1D waveform as input
 - 1D Convolutional Neural Network (CNN)

Input 1D waveform ($ec{x}$)	
Conv1D (filters=16)	
Conv1D (filters=32)	
Conv1D (filters=32)	
Conv1D (filters=64)	
Conv1D (filters=128)	
Dense (units=11)	
Output (ỷ)	

A. Gavrikov ¹G. Huang, TAUP 2023

Machine learning for IBDs in JUNO

Single channel level

PMT waveform reconstruction

energy & vertex reconstruction

Datasets

• **Two datasets**: for training and for testing

• Data description:

- positron events
- uniformly spread in the volume of the central detector
- $E_{kin} \in [0, 10]$ MeV. $E_{dep} = E_{kin} + 1.022$ MeV
- Training dataset:
 - 5 million events
 - uniformly distributed in kinetic energy E_{kin}

As **input** for ML models

• Full detector and electronics simulation¹

- Testing dataset:
 - subsets with **discrete** kinetic energies:
 - 0, 0.1, 0.3, 0.6, 1, 2, ..., 10 [MeV]
 - in total 140k events: each subset contains 10k

13 / 19

¹T. Lin et al. EPJ C **83**, 382 (2023)

III) dimensionality reduction needed

IV) different methods to process the signals

3) Graph neural networks (GNNs)

Aggregated features approach¹

~35k channels

charge and FHT

	Notation	Description
	AccumCharge	Total accumulated charg
	nPMTs	Number of fired PMTs
	$x_{\rm cc}, y_{\rm cc}, z_{\rm cc}, R_{\rm cc}, \theta_{\rm cc}, \phi_{\rm cc}, J_{\rm cc}, \rho_{\rm cc}, \gamma_z^{\rm cc}, \gamma_y^{\rm cc}, \gamma_x^{\rm cc}$	Center of charge
	pen%, pemean, pestd, peskew, pekurtosis	Charge distribution
Aggregate	$x_{\rm cht}$, $y_{\rm cht}$, $z_{\rm cht}$, $R_{\rm cht}$, $\theta_{\rm cht}$, $\phi_{\rm cht}$, $J_{\rm cht}$, $\rho_{\rm cht}$, $\gamma_z^{\rm cht}$, $\gamma_y^{\rm cht}$, $\gamma_x^{\rm cht}$	Center of FHT
information from the	ht_n %, $ht_{n_{i+1}}$ %- n_i %, ht_{mean} , ht_{std} , ht_{skew} , $ht_{kurtosis}$	FHT distribution
array of PMIS, USING DOTN		

Planar projections with CNN¹

- PMT-wise information as input
- Planar projection for both FHT and charge
- Each PMT as a pixel
- Classical convolution neural network architectures:

- ResNet
- Main hyperparameters

Parameter	Value
Loss	Mean Squared Error
Optimizer	Adam $(\beta_1 = 0.9, \beta_2 = 0.999)$
Learning rate	Linearly increasing from 0 to 10^{-3} during the first epoch,
	then exponential decay to 10^{-8} .
Batch size	64
N. Epochs	15

- **Issues** of the planar projection:
 - no regular grid can be constructed on the sphere
 - stretches or shrinks certain areas => breaking translational invariance
 - features that are close on the sphere can be far in the 2D projection

Graph neural network¹

Only neighboring pixels *i*, *j* have non-zero weights W_{ii} defined as follows:

$$W_{ij} = \exp\left(-\frac{\|\boldsymbol{v}_i - \boldsymbol{v}_j\|_2^2}{2\overline{d^2}}\right), \qquad \overline{d^2} = \frac{1}{|\mathcal{E}|} \sum_{(\boldsymbol{v}_i, \boldsymbol{v}_j) \in \mathcal{E}} \|\boldsymbol{v}_i - \boldsymbol{v}_j\|$$

Main hyperparameters

- **HEALPix** algorithm to divide the surface into **spherical pixels**
- *N*_{side} **controls** the discretization resolution
- N_{side} set to 16 => **3072** regions

Parameter	Value
Loss	Mean Absolute Percentage Error
Optimizer	Adam ($\beta_1 = 0.8, \beta_2 = 0.9$)
Learning rate	Fixed at 0.001 for $N_{\text{epoch}} < 3$, then exponential decay at rate -0.1 .
Batch size	64
N. Epochs	10

¹ Z. Qian et al. NIMA **1010** (2021): 165527

Results and comparisons^{1,2,3}

• Energy:

- Similar performance of both the simple models (aggregated features based)
- and the **complex** ones (GNN and CNNs)
- PMT-wise information is not essential
- Simple models perform *faster*
- Vertex:
 - The complex models perform better
 - Signal granularities are essential
 - PMT-wise information needed

¹Z. Qian et al. NIMA **1010** (2021): 165527

²A. Gavrikov, et al. EPJ Web Conf. **251** (2021): 03014

³A. Gavrikov et al. EPJ C **82**, 11 (2022): 1021

Conclusions

- JUNO is at the latest stage of its construction
- Many tools are being developed to be prepared for the first data, including ML techniques
- This talk covered only the part related to **reactor anti-neutrinos**
- ML shows **good** and **promising** results for JUNO
- But still, there are challenges to be addressed:
 - adaptation to the real data
 - stability and reliability
 - interpretability
- Calibration sources data for fine-tuning and to test the models
 19/19