

Deep Learning Techniques to Search for Rare Processes in LArTPC-based Neutrino Experiments

Daisy Kalra, Columbia University On behalf of the MicroBooNE Collaboration

22nd International Workshop on Next Generation Nucleon Decay and Neutrino Detectors NNN23 October 13, 2023

The LArTPC-based Neutrino Experiments

Current Generation Liquid Argon Time Projection Chamber (LArTPC) Detectors

SBND - 112 tons LArTPC Expect to begin operations in 2024

NNN SBN status talk

MicroBooNE - 85 tons LArTPC Collected data 2015-2021

JINST 12 (2017) 02, P02017 NNN MicroBooNE status talk

ICARUS - 476 tons LArTPC Taking data

Eur.Phys.J.C 83 (2023) 6, 467 NNN ICARUS status talk

The LArTPC-based Neutrino Experiments

Current Generation Liquid Argon Time Projection Chamber (LArTPC) Detectors

SBND - 112 tons LArTPC Expect to begin operations in 2024

NNN SBN status talk

MicroBooNE - 85 tons LArTPC Collected data 2015-2021

JINST 12 (2017) 02, P02017 NNN MicroBooNE status talk

ICARUS - 476 tons LArTPC Taking data

Eur.Phys.J.C 83 (2023) 6, 467 NNN ICARUS status talk

Next Generation LArTPC Detector

DUNE - 40 kt LArTPC nearly x400 and x500 larger than SBND and MicroBooNE resp. Expected to begin operations by 2026

> *Eur. Phys. J. C 80, 978 (2020) NNN DUNE status talk*

Rare Physics Processes in LArTPC-based Neutrino Experiments

- → Rare physics processes
 - Neutrinos from Supernova burst once per century.
 - Baryon Number Violating (BNV) Processes
 proton decay (< 1 interaction per year) and neutron antineutron transitions.
 - Processes involving **millicharged particles**.

Eur.Phys.J.C 81, 322 (2021) Eur.Phys.J.C 81, 423 (2021)

Rare Physics Processes in LArTPC-based Neutrino Experiments

- → Use data from MicroBooNE detector to develop deep learning techniques to search for rare events
 - Focus on **neutron antineutron transition process.**

<u>NNN MicroBooNE status talk</u> By Lu Ren

- → Exposed to two beamlines-
 - On-axis to Booster Neutrino Beam (BNB).
 - Off-axis to Neutrinos at Main Injector (NuMI).
- → Recorded off-beam data (no neutrino interactions) → to develop deep learning based algorithms to search for rare events.
- → Utilize LArTPC's high resolution images of interactions.

Deep Learning Techniques for Rare Physics Processes Neutron-antineutron (nnbar) transition using the MicroBooNE detector

First demonstration for a LArTPC-based search for intranuclear neutron-antineutron transitions and annihilation in 40 Ar using the MicroBooNE detector <u>arxiv:2308.03924</u>

Neutron-antineutron transition

Annihilation with a nucleon

Simulated neutron-antineutron annihilation event display in MicroBooNE's LArTPC where pions are visible due to ionization energy deposits.

Deep Learning Techniques for Rare Physics Processes The analysis flow

Deep Learning Techniques for Rare Physics Processes The analysis flow

→ The analysis begins with reconstructed "clusters" (3D objects (spacepoints) with information on position, time and charge deposition) over each exposure window of 2.3ms (~drift time) per event. <u>JINST 16 P06043</u>

Deep Learning Techniques for Rare Physics Processes Neutron-antineutron (nnbar) transition - Reconstructed Clusters

- → Background off-beam data (no neutrino interactions) consisting of cosmogenic interactions.
 - Cosmic ray muons and/or the induced electromagnetic and hadronic showers.

 \rightarrow

Deep Learning Techniques for Rare Physics Processes Neutron-antineutron (nnbar) transition - Reconstructed Clusters

- → Background off-beam data (no neutrino interactions) consisting of cosmogenic interactions.
 - Cosmic ray muons and/or the induced electromagnetic and hadronic showers.
- → Signal GENIE simulated nnbar interactions overlaid on the top of background.
 - Utilize truth level information to separate signal and background clusters.

Deep Learning Techniques for Rare Physics Processes Machine learning and deep learning based selection

→ Utilize topological features such as extent of a cluster (in all the planes) and number of spacepoints in a cluster to train machine-learning and deep-learning based algorithms.

Deep Learning Techniques for Rare Physics Processes Boosted Decision Tree (BDT) performance

- → BDT aims to effectively reject the background while maintaining signal selection efficiency.
- → BDT selected clusters are used to train deep learning (a sparse Convolution Neural Network) network for further purify the signal and reject background.

Distributions of data-driven background and **observed data** correspond to statistically independent samples where the sample used to determine data-driven background has x10 statistics than the "data" sample.

Deep Learning Techniques for Rare Physics Processes A sparse Convolution Neural Network (CNN) with *VGG16 network architecture

Sparsified (Localized) input images of interaction saving only position, time, and hit value.

<u>*[1]: arxiv:1711.10275</u> *[<u>2]: arxiv:1706:01307</u> *[<u>3]: Phys. Rev. D 103 052012</u>

Output score represents probability, which is normalized to be summed up to 1.

Deep Learning Techniques for Rare Physics Processes A sparse Convolution Neural Network (CNN) based selection

→ Selecting signals with CNN > 0.80 (a score cut is optimized based on sensitivity (90% CL) as a figure of merit), yields 72% signal selection efficiency.

Deep Learning Techniques for Rare Physics Processes Topological based selection

→ Further, a topological based selection is applied to further reject the background.

Deep Learning Techniques for Rare Physics Processes Final selection

Selection Stage	Signal	Background
No selection	$1,\!633,\!525$	$1,\!618,\!827$
Stage 1 $BDT > 0.1$	$1,\!411,\!164$	139,802
Stage 2 CNN > 0.8	1,202,281	142
Stage 3 Topological	$1,\!147,\!157$	32
Signal selection efficiency	70.0%	-
Background rejection efficiency	-	99.99%

→ Deep-learning algorithms, trained utilizing topological features only, yield an impressive signal selection efficiency (a substantial improvement over the previous results from Super-K which reported 4.1% signal selection efficiency Phys.Rev.D 103 012008).

Deep Learning Techniques for Rare Physics Processes

Uncertainties on signal selection efficiency

Systematic uncertainties	
GENIE	4.85%
Detector	6.72%
GEANT4	2.32%
Total systematic uncertainty on signal	8.61% (quadrature sum of unc. From GENIE, detector and Geant4)

Uncertainties on background

Systematic uncertainties	
Total systematic uncertainty on background	17.68% (1/sqrt(32))

Deep Learning Techniques for Rare Physics Processes Limit on nnbar lifetime with 90% CL

→ The observed events 32, corresponding to 3720 s of exposure (equivalent to 3.3 x 10²⁷ neutron-years) are used to evaluate lower limit on nnbar lifetime at 90% CL using <u>TRolke Method</u>

Lifetime limit At 90% CL		arxiv:2308.03924	Suppres	sion factor
Bound	5.3 x 10 ²⁵ years		$ au_m = I$	$R au_{n-ar{n}}^2.$
Free	3.3 x 10 ⁵ s	Bour lifeti	nd neutron me	Free neutron lifetime

→ The obtained limits are lower than the current best limits from the Super-K experiment (<u>Phys.Rev.D 103</u> 012008) because of smaller-sized detector and low exposure. But, the developed methodology serves as an important proof-of-principle for the future DUNE experiment.

Rare Physics Searches in the Next-Generation Large-Scale LArTPC Detector (DUNE)

Rare Physics Searches in DUNE

- → One of the physics goals of the DUNE detector is to search for **non-beam rare physics events** such as neutrinos from Supernova burst and BNV processes -
 - Random in time.
 - Require continuous readout with 100% live time.

- \rightarrow DUNE, with millions of readout channels, will have uncompressed data rates > 5TB/s.
- → This motivates to develop an efficient data-driven triggers to target such searches.

Data-Driven Trigger Development using MicroBooNE

- → Low level Trigger Primitives, manually generated from the continuous stream TPC data, are used to generate a high level trigger decision → generate data-driven trigger.
- → Currently, this framework is being demonstrated to identify michel electrons based on both the topological and calorimetric information.

J.Phys.Conf.Ser. 2374 (2022) 1, 012163

JINST 16 (2021) 02, P02008

NNN23

Summary

- → Demonstrated LArTPC's capability, using MicroBooNE's data, combined with deep-learning algorithms to select neutron-antineutron transition-like events (one of the rare physics processes) with impressive signal selection efficiency (70%) and strong background rejection. <u>arxiv:2308.03924</u>
- Demonstrating online data-driven self-triggering on cosmogenic activities using the MciroBooNE data
 - (Stay tuned for the publication!)
 - Future plans are to demonstrate self-triggering capability in real-time using SBND detector on more complex physics processes including rare events and other new signatures e.g. millicharged particles.
- → Both of these developments, using MicroBooNE , enhance DUNE's capability in the realms of low-energy physics and rare event searches.

Sample Division

CV sample has an exposure x10 larger than the data exposure. CV sample is used to estimate background and hence to evaluate systematic uncertainties on background (EXT-unbiased data) The analysis is developed as blind analysis and tested first on fake-data sample before looking into the data. Fake-data is prepared by injecting x% of nnbar signal into EXT-data.

Deep Learning Techniques for Rare Physics Processes Machine learning and deep learning based selection

Current Best Limit

- → Current best limit on nucleus (¹⁶O) bound neutron-antineutron process is from Super-K experiment. (<u>Phys.</u> <u>Rev. D 103 012008</u>)
 - Using 6050 live days of data (representing 0.37 Mton-years), 11 candidate events were observed with an expected background of 9.3 ± 2.7 .
 - A lower limit on the ¹⁶O bound neutron-antineutron transition lifetime is placed 3.6×10^{32} years at 90% C.L.
- → Stringent bound on n-nbar transition rate probes BNV theories attempting to explain the observed baryon asymmetry in the Universe <u>Phys. Rev. D 87, 115019</u>, <u>Phys. Rev. D 87, 075004</u>

MicroBooNE

R&D for the next-generation LArTPC-based experiments

- Exposed to two beamlines-
 - On-axis to Booster Neutrino Beam (BNB).
 - Off-axis to Neutrinos at Main Injector (NuMI).
- → Recorded off-beam data (no neutrino interactions) → to develop deep learning based algorithms to search for rare events.

- 2-D images of interaction with information of deposited ionization as a function of wire and time.
- Excellent spatial resolution, particle identification and excellent calorimetry.

Deep Learning Techniques for Rare Physics Processes A sparse Convolution Neural Network (CNN) with *VGG16 network architecture

<u>*[1]: arxiv:1711.10275</u> *[<u>2]: arxiv:1706:01307</u> *[<u>3]: Phys. Rev. D 103 052012</u>

The network takes sparsified 2D input images of interaction (saving only position, time and hit value) in three planes (U,V, and Y).

Deep Learning Techniques for Rare Physics Processes A sparse Convolution Neural Network (CNN) with VGG16 network architecture

Input image is first convolved through linear transformation. Rectified Linear Unit (ReLU) is used to introduce non-linearities → help CNN to learn about the input features in-depth.

Network layer	Kernel size	Filter depth
Input (Collection plane image)	
Convolution	3 × 3	64
Convolution	3×3	64
Max pool	2×2	
Convolution	3 × 3	128
Convolution	3×3	128
Max pool	2×2	
Convolution	3 × 3	256
Convolution	3×3	256
Max pool	2×2	
Convolution	3 × 3	512
Convolution	3×3	512
Convolution	3×3	512
Max pool	2×2	
Convolution	3 × 3	512
Convolution	3×3	512
Convolution	3×3	512
Max pool	2×2	
Fully connected		

-	weights			
	1	0	-2	0
	2	1	-1	-1
	0	3	-3	-1
	-1	0	1	0
	1	0	2	1
	1	1	1	-1
	0	1	0	-1
	-1	-1	-1	1
	0	0	-2	0
	1	-1	0	1
	0	1	-3	-1
	-1	1	-2	1

Deep Learning Techniques for Rare Physics Processes BDT and CNN based selection

 \rightarrow A sparse-CNN uses a *VGG16 network with ~15 convolution layers, and a columnar sparse input.

Saving only the position, time and hit value rather than the full image and no loss in resolution of the image as in downsampling

(N, 3) format N: the number of space points in a cluster

<u>*[1]: arxiv:1711.10275</u> *[<u>2]: arxiv:1706:01307</u> *[<u>3]: Phys. Rev. D 103 052012</u>

CNN score cut optimization

- \rightarrow CNN score cut is optimized based on sensitivity as a figure of merit.
- \rightarrow Sensitivity is evaluated with 90% CL using TRolke approach.
- \rightarrow A score cut at 0.8 maximizes the sensitivity.

CNN cut	Sensitivity
0.797	$2.62\mathrm{e}{+25} \mathrm{yrs}$
0.798	$2.83\mathrm{e}{+25} \mathrm{yrs}$
0.799	$2.98\mathrm{e}{+25}~\mathrm{yrs}$
0.800	2.99e+25 yrs
0.801	$2.95\mathrm{e}{+25}~\mathrm{yrs}$
0.802	2.65e+25 yrs
0.803	1.95e+25 yrs

CNN selected clusters

Final Selected Signal Cluster

Final Selected Signal Cluster

Final Selected Background Cluster

Final Selected Background Cluster

Systematic Uncertainties on Signal

GENIE model	η (%)
hA-BR	1.17
hN-BR	4.56
hN-LFG	1.14
Total	4.85

Signal selection efficiency with other models than nominal

$$\eta = rac{\epsilon_{
m nom} - \epsilon}{\epsilon_{
m nom}}$$

Nominal (hA-LFG)signal selection efficiency

$$\sigma = rac{1}{N_{\mathrm{w}}}\sum_{i=1}^{N_{\mathrm{w}}}(W_{\mathrm{i}}-N)^2,$$

No. of weights, 1000.

Geant4 re-interactions	$\sigma~(\%)$
π^+	0.89
π^-	1.3
proton	1.7
Total	2.32

Systematic Uncertainties on Signal

$$\eta_{\rm err} = \sqrt{\frac{\epsilon(1-\epsilon)}{N}},$$

$$\eta_{\mathrm{errnom}} = \frac{\epsilon_{\mathrm{nom}} - \epsilon}{\epsilon_{\mathrm{nom}}},$$

Signal selection efficiency with various samples N: number of signal events

,

Detector variation	$\eta_{ m err}~\%$	$\eta_{ m errNom}~\%$	$\eta~\%$
Recombination	0.13	0.53	0.54
Light yield	0.22	1.15	1.17
Space charge effect	0.12	0.13	0.18
TPC waveform modeling	0.24	6.59	6.59
Total			6.72