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Next Generation LArTPC Detector
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Rare Physics Processes in LArTPC-based Neutrino Experiments

=> Rare physics processes
€ Neutrinos from Supernova burst - once per
century.
4 Baryon Number Violating (BNV) Processes
- proton decay (< 1 interaction per year) and
neutron antineutron transitions.

€ Processes involving millicharged particles.
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Eur.Phys.J.C 81, 322 (2021)
JHEP 11 (2021) 099 JHEP 07 (2019) 170 Eur.Phys.J.C 81, 423 (2021)
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Rare Physics Processes in LArTPC-based Neutrino Experiments

=> Use data from MicroBooNE detector to develop deep learning techniques to search for rare events
€ Focus on neutron antineutron transition process.

NNN MicroBooNE status talk
By Lu Ren

x500 smaller than
DUNE

=> Exposed to two beamlines-
€ On-axis to Booster Neutrino Beam (BNB).
€ Off-axis to Neutrinos at Main Injector (NuMI).

=> Recorded off-beam data (no neutrino interactions) — to
develop deep learning based algorithms to search for rare
events.

=> Utilize LArTPC’s high resolution images of interactions.
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Deep Learning Techniques for Rare Physics Processes
Neutron-antineutron (nnbar) transition using the MicroBooNE detector

First demonstration for a LArTPC-based search for intranuclear neutron-antineutron
transitions and annihilation in 40 Ar using the MicroBooNE detector arxiv:2308.03924

Simulated neutron-antineutron annihilation event
display in MicroBooNE’s LArTPC where pions

. are visible due to ionization energy deposits.
Neutron-antineutron gy acp

transition

Annihilation with a nucleon

ol YAr /S"
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Deep Learning Techniques for Rare Physics Processes
The analysis flow

Reconstructed Topological Topological Nnbar lifetime
clusters over 2.3 driven BDT CNN-based driven final sensitivity and
ms exposure based selection selection limit at 90%C.L
interval preselection

=> The analysis begins with reconstructed “clusters” (3D objects (spacepoints) with information on position,
time and charge deposition) over each exposure window of 2.3ms (~drift time) per event. JINST 16 P06043
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Deep Learning Techniques for Rare Physics Processes
Neutron-antineutron (nnbar) transition - Reconstructed Clusters
=> Background - off-beam data (no neutrino interactions) consisting of cosmogenic interactions.

€ Cosmic ray muons and/or the induced electromagnetic and hadronic showers.
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Deep Learning Techniques for Rare Physics Processes
Neutron-antineutron (nnbar) transition - Reconstructed Clusters

=> Background - off-beam data (no neutrino interactions) consisting of cosmogenic interactions.
€ Cosmic ray muons and/or the induced electromagnetic and hadronic showers.

=> Signal - GENIE simulated nnbar interactions overlaid on the top of background.
€  Utilize truth level information to separate signal and background clusters.
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Deep Learning Techniques for Rare Physics Processes
Machine learning and deep learning based selection

=> Utilize topological features such as extent of a cluster (in all the planes) and number of spacepoints in a
cluster to train machine-learning and deep-learning based algorithms.
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Deep Learning Techniques for Rare Physics Processes
Boosted Decision Tree (BDT) performance

MicroBooNE => BDT aims to effectively reject the
Exposure 372 s

10°
— Signal prediction (arb. norm.) background while maintaining signal

— Data-driven background with uncertainty

selection efficiency.
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Distributions of data-driven background and observed data correspond to statistically independent samples where
the sample used to determine data-driven background has x10 statistics than the “data” sample.
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Deep Learning Techniques for Rare Physics Processes
A sparse Convolution Neural Network (CNN) with *VGG16 network architecture

MicroBooNE
Exposure 372 s

— Signal prediction (arb. norm.)

Input 10°
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Deep Learning Techniques for Rare Physics Processes
A sparse Convolution Neural Network (CNN) based selection
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Deep Learning Techniques for Rare Physics Processes
Topological based selection
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Deep Learning Techniques for Rare Physics Processes
Final selection

Selection Stage Signal  Background
No selection 1,633,525 1,618,827
Stage 1 BDT>0.1 1,411,164 139,802
Stage 2 CNN>0.8 1,202,281 142
Stage 3 Topological 1,147,157 32
Signal selection efficiency 70.0% -
Background rejection efficiency - 99.99%

=> Deep-learning algorithms, trained utilizing topological features only, yield an impressive signal
selection efficiency (a substantial improvement over the previous results from Super-K which reported
4.1% signal selection efficiency Phys.Rev.D 103 012008).
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Deep Learning Techniques for Rare Physics Processes
Uncertainties on signal selection efficiency

Systematic uncertainties

GENIE 4.85%
Detector 6.72%
GEANT4 2.32%
Total systematic uncertainty on signal 8.61% (quadrature sum of unc. From GENIE,

detector and Geant4)

Uncertainties on background
Systematic uncertainties

Total systematic uncertainty 17.68% (1/sqrt(32))
on background
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Deep Learning Techniques for Rare Physics Processes
Limit on nnbar lifetime with 90% CL

- The observed events 32, corresponding to 3720 s of exposure (equivalent to 3.3 x 10? neutron-years)
are used to evaluate lower limit on nnbar lifetime at 90% CL using TRolke Method

Lifetime limit arxiv:2308.03924 Suppression factor
At 90% CL
2
Bound 5.3 x 10 years Tm — R'Tn_ 7
Free 33x105s Bound neutron Free neutron
lifetime lifetime

=> The obtained limits are lower than the current best limits from the Super-K experiment (Phys.Rev.D 103

012008) because of smaller-sized detector and low exposure. But, the developed methodology serves as
an important proof-of-principle for the future DUNE experiment.
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Rare Physics Searches in the Next-Generation Large-Scale
LArTPC Detector (DUNE)
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Eur.Phys.J.C 81.322 (2021)

Rare Physics Searches in DUNE Eur.Phys.J.C 81, 423 (2021)

=> One of the physics goals of the DUNE detector is to search for non-beam rare physics events such as

neutrinos from Supernova burst and BNV processes -
€ Random in time.
€ Require continuous readout with 100% live time.

SN interaction +
radiological background

Proton decay :Se;lt'r:n{\‘;sntineutron

=> DUNE, with millions of readout channels, will have uncompressed data rates > 5TB/s.
=> This motivates to develop an efficient data-driven triggers to target such searches.
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Data-Driven Trigger Development using MicroBooNE

i = BN

Process-1 (

: Process-2
Data pre-processing and e eaer-candiiste Process-3
generating data per drift . ngegration Trigger Supervisor
region & Y,

< 4

Following DUNE FD selection approach

JINST 16 (2021) 02, P02008

=> Low level Trigger Primitives, manually generated from the
continuous stream TPC data, are used to generate a high level /0
trigger decision — generate data-driven trigger. o e b R @

| 24

bremsstrahlung photo

=>  Currently, this framework is being demonstrated to identify Sura o *“‘/ p-
michel electrons based on both the topological and calorimetric 2
information.

J.Phys.Conf.Ser. 2374 (2022) 1,012163 e i s M e e e
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Summary

=> Demonstrated LArTPC’s capability, using MicroBooNE’s data, combined with deep-learning
algorithms to select neutron-antineutron transition-like events (one of the rare physics processes)
with impressive signal selection efficiency (70%) and strong background rejection. 5ryiy:2308.03924

=> Demonstrating online data-driven self-triggering on cosmogenic activities using the MciroBooNE
data
(Stay tuned for the publication!)
€ Future plans are to demonstrate self-triggering capability in real-time using SBND detector on more
complex physics processes including rare events and other new signatures e.g. millicharged
particles.

=> Both of these developments, using MicroBooNE , enhance DUNE’s capability in the realms of
low-energy physics and rare event searches.
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https://inspirehep.net/literature/2686323

Daisy Kalra (Columbia University)



Sample Division

CV sample has an exposure x10 larger than the data exposure.
CV sample is used to estimate background and hence to evaluate
systematic uncertainties on background (EXT-unbiased data)

And to evaluate real limit on nnbar lifeti

The analysis is developed as blind
analysis and tested first on fake-data
sample before looking into the data.
Fake-data is prepared by injecting x%
of nnbar signal into EXT-data.

Central value
MC sample:
50%

For evaluating
90% C.L

sensitivity and
demonstrative
limits to nnbar

Signal processing: processing with nnbar simulation overlaid
Background processing: data-driven simulation

lifetime.

Data
processing
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Deep Learning Techniques for Rare Physics Processes
Machine learning and deep learning based selection
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Current Best Limit

- Current best limit on nucleus (*°O) bound neutron-antineutron process is from Super-K experiment. (Phys.

Rev. D 103 012008)
€ Using 6050 live days of data (representing 0.37 Mton-years), 11 candidate events were observed with an expected
background of 9.3 +£2.7.
€  Alower limit on the '°O bound neutron-antineutron transition lifetime is placed 3.6 x 10°? years at 90% C.L.

=> Stringent bound on n-nbar transition rate probes BNV theories attempting to explain the observed baryon
asymmetry in the Universe Phys. Rev. D 87. 115019, Phys. Rev. D 87, 075004
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R&D for the next-generation LArTPC-based experiments

x500 smaller than
DUNE
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=>  Exposed to two beamlines-

€ On-axis to Booster Neutrino Beam (BNB). % 2-D images of interaction with information of
¢ Off-axis to Neutrinos at Main Injector deposited ionization as a function of wire and
(NuMI). time
=> Recorded off-beam data (no neutrino ’ ) ) o ) )
% Excellent spatial resolution, particle identification

interactions) — to develop deep learning based
algorithms to search for rare events. and excellent calorimetry.
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Deep Learning Techniques for Rare Physics Processes
A sparse Convolution Neural Network (CNN) with *VGG16 network architecture

Input

conv. layer

conv. layer

The network takes sparsified 2D input images of interaction
in three planes (U,V, and Y).

Daisy Kalra (Columbia University)
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Deep Learning Techniques for Rare Physics Processes
A sparse Convolution Neural Network (CNN) with VGG16 network architecture

Input ) | thro
Rectified Linear Unit (ReLU) is used to introduce non-Ii
input features in-depth.

Network layer Kernel size  Filter depth
Input (Collection plane image) .
Convolution 3x3 64 Welghts f( 2) — (0] (W’ . f -+ b ) il 0-
Convolution 3x3 64 : U : ¢
110[(-2/0 y:
Max pool 2x2 2111111
Convolution 3x3 128 Neuron
Convolution 3x3 128 0/[3/[-3]-1 output
Max pool 2x2 -110(1/0
Convolution 3x3 256 101211 Activation
Convolution 3x3 256 Sfuncti
Max pool 2% 2 1/1]1]-1
Convolution 3x3 512 0/1/0/|-1
Convolution 3x3 512 “1(-11-1]1 D"t;;"b",l""t’
Convolution 3x3 512 aaaoias
Max pool 2x2 0/0/-2/0
Convolution 3x3 512 11-110/1
Convolution 3x3 512 ol1l-3/1
Convolution 3x3 512 112l
Max pool 2x2 Z &

Fully connected
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Deep Learning Techniques for Rare Physics Processes

BDT and CNN based selection

=> A sparse-CNN uses a *VGG16 network with ~15 convolution layers, and a columnar sparse input.

Saving only the position, time and
hit value rather than the full image
and no loss in resolution of the
image as in downsampling

*[1]: arxiv:1711.10275
*2]: arxiv:1706:01307
*3]: Phys. Rev. D 103 052012

Daisy Kalra (Columbia University)
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CNN score cut optimization

=> (NN score cut is optimized based on sensitivity as a figure of merit.

=>  Sensitivity is evaluated with 90% CL using TRolke approach.

=> A score cut at 0.8 maximizes the sensitivity.

Daisy Kalra (Columbia University)

CNN cut | Sensitivity
0.797 2.62e+25 yrs
0.798 2.83e+25 yrs
0.799 2.98e+25 yrs
0.800 2.99e+-25 yrs
0.801 2.95e+25 yrs
0.802 2.65e+25 yrs
0.803 1.95e+-25 yrs




CNN selected clusters

ime shce

Daisy Kalra (Columbia University)
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Final Selected Signal Cluster

MicroBooNE Run 1495A Subrun 12 Event 639

-~
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Final Selected Signal Cluster

MicroBooNE Run 14954 Subrun 12 Event 630
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Final Selected Background Cluster

MicroBooNE Run 15152 Subrun 66 Event 3332
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Final Selected Background Cluster

MicroBooﬁNE Run 14694 Subrun 60 Event 3045
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Systematic Uncertainties on Signal

Signal selection

efficiency with other
models than nominal

GENIE model n (%)
hA-BR 1.17 _ €nom — €
hN-BR 4.56 o €
hN-LFG 1.14 =R
Total 4.85 Nominal (hA-LFG)signal
selection efficiency
Nw Geant4 re-interactions o (%)
L ot 0.89
Ny z=1 ™ 1.3
proton 1.7
No. of weights, 1000. Total 2.32
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Systematic Uncertainties on Signal

€nom — €
n . 6(1 _ 6) Nerrnom — "
err — )
N nom

Signal selection efficiency with

various samples

N: number of signal events
Detector variation Nerr %0 NersNom ‘To n %
Recombination 0.13 0.53 0.54
Light yield 0.22 1.15 117
Space charge effect 0.12 0.13 0.18
TPC waveform modeling 0.24 6.59 6.59
Total 6.72

Daisy Kalra (Columbia University)




