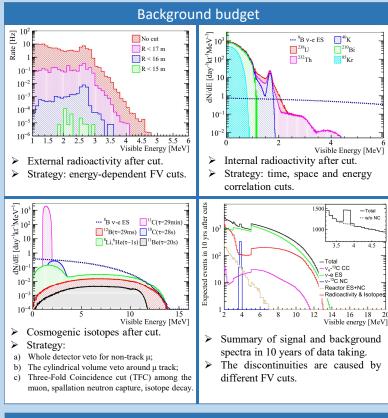
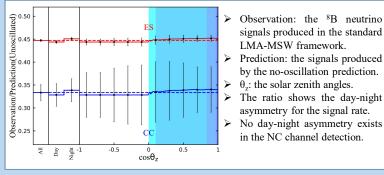
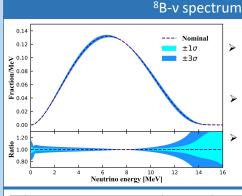

Physics potential of detecting ⁸B solar neutrinos at JUNO

Xin Zhang^{a,b} on behalf of JUNO Collaboration


[a] Institute of High Energy Physics, Chinese Academy of Sciences [b] University of Chinese Academy of Sciences

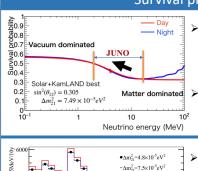
zhangxin@ihep.ac.cn





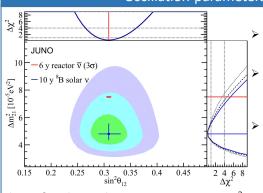
- The central detector includes a 20 kton liquid scintillator target.
- 17,612 20-inch PMTs and 25,600 3-inch PMTs detect the light emitted by the LS. \triangleright The main physics goal of JUNO is to determine neutrino mass ordering and make
- a precise determination of the oscillation parameters. In solar neutrino physics, JUNO can resolve the solar metallicity problem and the
- measurement of Δm_{21}^2 .

Day-Night asymmetry



⁸B v_e spectrum together with the shape uncertainties.

- The primary detection channel is the neutrino electron elastic scattering (ES, 4cpd/kt).
- In addition, there are other channels known as charged current (CC) and neutral current (NC).


No.	Channels		Threshold [MeV]	Signal	Event numbers (10 years)
1		$\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N(1^+; gnd)$ [32]	16.827	$e^{-}+^{12}N \text{ decay } (\beta^{+}, Q=17.338 \text{ MeV})$	0.43
1	$\mathbf{C}\mathbf{C}$	$\nu_e + {}^{13}\text{C} \rightarrow e^- + {}^{13}\text{N}(\frac{1}{2}; \text{gnd})$ [33]	2.2	$e^{-}+^{13}N \text{ decay } (\beta^{+}, \mathbf{Q}=2.22 \text{ MeV})$	3929
2		$\nu_e + {}^{13}\text{C} \rightarrow e^- + {}^{13}\text{N}(\frac{3}{2}; 3.5 \text{ MeV})$ [33]	5.7	e^-+p	2464
4		$\nu_x + {}^{12}C \rightarrow \nu_x + {}^{12}C(1^+; 15.11 \text{ MeV})$ [32]	15.1	γ	4.8
3		$\nu_x + {}^{13}\text{C} \rightarrow \nu_x + n + {}^{12}\text{C}(2^+; 4.44 \text{ MeV})$ [34]	6.864	$\gamma + n$ capture	65
4		$\nu_x + {}^{13}C \rightarrow \nu_x + {}^{13}C(\frac{1}{2}^+; 3.089 \text{ MeV})$ [33]	3.089	γ	14
5	NC	$\nu_x + {}^{13}C \rightarrow \nu_x + {}^{13}C(\frac{3}{2}; 3.685 \text{ MeV})$ [33]	3.685	γ	3032
6		$\nu_x + {}^{13}\text{C} \rightarrow \nu_x + {}^{13}\text{C}(\frac{5}{2}^+; 3.854 \text{ MeV})$ [33]	3.854	γ	2.8
7	ES	$\nu_x + e \rightarrow \nu_x + e$	0	e-	3.0×10^{5}

200

Survival probability

- The standard scenario of three neutrino mixing predicts a smooth upturn in the v_e survival probability (P_{ee}) in the neutrino energy region between the high and low ranges.
- JUNO can observe the spectral upturn.
- The expected $^8\mathrm{B}$ ν_e signal spectra produced in the standard LMA-MSW framework for different cases. The Pee is assumed as a flat value for
- energy lager than 2 MeV.
- The comparison with the no flavor conversion cases, which shows the significant upturn.
- The upturn of blue line comes from the appearance of $v_{\mu,\tau}$.

- The expected sensitivity of $\sin^2 \theta_{12}$ and Δm_{21}^2 with 10 years of data taking. For comparison, the red
- region shows the result from 6 years reactor $\bar{\nu}_e$ with 3σ uncertainty. The one-dimensional $\Delta \chi^2$ for $\sin^2 \theta_{12}$ and Δm_{21}^2 are shown in the top and right panels, respectively.
- By ⁸B solar neutrinos, JUNO can measure Δm^2_{21} to a precision of 20%, and ۶ $\sin^2\theta_{12}$ to a precision of 8%.
- It will provide a unique possibility to compare Δm_{21}^2 from reactor and solar channels using the same detector.

[1] JUNO, A. Abusleme et al., Feasibility and physics potential of detecting 8B solar neutrinos at JUNO, Chin. Phys. C 45, 023004 (2021). [2] JUNO, Jie Zhao et al., Model Independent Approach of the JUNO 8B Solar Neutrino Program, arXiv:2210.08437 (2022).

Oscillation parameters

0 12 Visible Ener rgy [MeV]

 $P_{ee}=0.32 (E_v > 2MeV)$

References