

22nd International Workshop on Next Generation Nucleon Decay and Neutrino Detectors

NNN23 Summary

Sunny Seo Fermilab

List of Talks given at NNN23

v Oscillation Day 1 Future v Osc.	$\begin{array}{c} \text{Astrophysical } \nu \\ \text{Day 2} 0\nu\beta\beta \end{array}$	v Interaction Day 3 AI/ML
Nu Osc. Overview: theory, exp Nucleon decay overview Reactor Nu Exp. Overview SK+T2K: osc. Analysis NOvA status T2K: osc. X-section ICARUS status: Daya Bay: updated results HK status DUNE status JUNO	SuperNova nu overview Atm. Solar Nu: HE Astrophysical Nu SK status ANTARES, KM3NET IceCube Quantum Gravity effect from IC nu Nu mass measurements Onbb LEGEND NEXO CUPID	Nu nucleus interaction MINERvA MicroBooNE SBND T2K ND280 upgrade HK nu interaction uncertainty challenge ENUBET monitored nu beam for precise x-sec NA61/SHINE AI/ML in nu physics Graph NN for reco in LArTPC ML for reco in JUNO

12 talks

12 talks

11 talks

Sunny Seo, Fermilab

Thanks so much !!

Alessandro Granelli for theoretical overview of \boldsymbol{v} oscillation

Linda Cremonesi for experimental overview of $\boldsymbol{\nu}$ oscillation

 \rightarrow However, I won't summarize your talks.

Mainly due to redundancy.

Sunny Seo, Fermilab

Important Questions in Neutrino Physics

> NNN23 consists of talks trying to answer these questions.

Sunny Seo, Fermilab

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix

A. Granelli

Parameters from global fits

Ordering	θ 12 (°)	θ ₁₃ (°)	θ ₂₃ (°)	δ (°)	Δm^2_{21} $(10^{-5} { m eV}^2)$	$\Delta m^2_{31(32)}$ ($10^{-3} { m eV}^2$)
NO	33.41 ^{+0.75} _{-0.72}	$8.58^{+0.11}_{-0.11}$	$42.1_{-0.9}^{+1.1}$	232^{+36}_{-26}	$7.41_{-0.20}^{+0.21}$	$2.507\substack{+0.026\\-0.027}$
Ю	$33.41_{-0.72}^{+0.75}$	$8.57^{+0.11}_{-0.11}$	$49.0^{+1.0}_{-1.2}$	276^{+22}_{-29}	$7.41^{+0.21}_{-0.20}$	$-2.486^{+0.025}_{-0.028}$

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou (2020), NuFIT 5.2 (2022), www.nu-fit.org

Current status of neutrino parameters: the era of very precise neutrino physics

determining neutrino properties!

Daya Bay R. Zhao
Completed in Dec. 2020, 3158 days in total
Best-fit results:

$$\sin^2 2\theta_{13} = 0.0851^{+0.0024}_{-0.0024}$$
 (2.8%)
Normal hierarchy:
 $\Delta m^2_{32} = +(2.466^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.4%)
Inverted hierarchy:
 $\Delta m^2_{32} = -(2.571^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.3%)

RENO@ Neutrino2022 (~2900 d) $sin^2 2\theta_{13} = 0.0892 \pm 0.0044(stat.) \pm 0.0045(sys.)$ (7.0%) $|\Delta m^2_{ee}| = 2.74 \pm 0.10(stat.) \pm 0.06(sys.) \times 10^{-3} eV^2$ (4.4%)@ NuFact2023Completed in 2023.03.16 (up to 3800 d), expect $sin^2 2\theta_{13} : 6.3\%$, $|\Delta m^2_{ee}| : 4.2\%$ Plan to reoperate the near detector for sterile v

L. Wen

Double Chooz @ TAUP2023

sin²2θ₁₃=0.102±0.011 (syst.) ±0.004 (stat.) (11.4%) w/ 1276 live-days Far, 587 live-days Near

Reactor Antineutrino flux Anomaly (RAA)

L. Wen

JUNO						
	Design (J. Phys. G 43:030401 (2016))	Now (2022)	Mass			
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)	Osc.			
Overburden	~700 m	~650 m	SN B			
Muon flux in LS	3 Hz	<mark>4 Hz (33%</mark> ↑)	@10			
Muon veto efficiency	83%	93% (12% ↑)	DSNE			
Signal rate	60 /day	47.1 /day (22%↓)	Solar			
Backgrounds	3.75 /day	4.11 /day (10%î)				
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%î)	Nucle			
Shape uncertainty	1%	JUNO+TAO	(p →			
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}	Geo			
Civil construction						
2013	2022		2024			
201 Approved	5 Detector construction	now Detector completed	Data-ta			

M. Grassi

hyiscs	Sensitivity				
lass Ordering		3σ (~1 σ) in 6 yrs by reactor (atm.) ν			
sc. Parameters		Solar params & $ \Delta m^2_{32} < 0.5\%$ in 6 yrs			
N Burst 910kpc		~5k IBD, ~300 eES, ~2k pES of all-falvor ν			
SNB		3σ in 3 yrs			
olar v		Measure Be7, pep, CNO simultaneously, Measure B8 flux independently			
ucleon decays $p \rightarrow vK^+$)		8.3x10^33 yrs (90% CL) in 10 yrs			
eo v		~400/yr, 5% measurement in 10 yrs			
	Prec	JUNO-TAO ise measurement of reactor v spectrum			
	2.8 ton detector at ~44 m from reactor				
024 ta-taking	Energy resolution: < 2% at 1 MeV (4500 PE/MeV)				

Detector at -50°C (reduce SiPM dark rate) 9

Current & Future Longbaseline v experiments

Current & Future Longbaseline v experiments

	Т2К	NOvA	DUNE	Hyper-K	Τ2ΗΚΚ/ΚΝΟ
Beam	J-PARC	NuMi	NuMi	J-PARC	J-PARC
Beam power	515 kW (in 2020)	700 kW	1.2 →2.4 MW	1.3 MW	1.3 MW
ν energy	< 2 GeV		< 8 GeV	< 2 GeV	< 2 GeV
Baselines	280m/295km	1km/810km	1300 km	280m/295km	280m/1100km
Off-axis angle	2.5 ⁰	0.8 ⁰	on-axis	2.5 ⁰	1~3 ⁰
Near Det.	ND280 (on-axis)		DUNE-Prism (on-/off-axis)	ND280 (on-axis)	ND280 (on-axis)
		0.3 kt			
Far Det.	Water Cherenkov	segmented sciintillator	LAr-TPC	Water Cherenkov	Water Cherenkov
	SK (50 kt)	14 kt	4 x 17 kt	260 kt	260 kt
Sunny Seo, Fermilab	ـــــا Operatir		Constr	ے۔۔۔۔۔ uction phase	IWC detector for H (off-axis)

11

Sunny Seo, Fermilab

NNN23, Procida, Italy

12

Total events - neutrino beam

Super-K Atm. v

T. Wester

Enhancement by Matter effect

SK-Gd is performing as expected.

Neutrino Oscillation Physics in ~2040

K. Hiraide		Hyper-K	DUNE	M. Tenti
	Baseline	295 km	1300 km	
	Detector Fiducial Vol.	190 kton water	40 kton LAr	
	ΡΟΤ (run time, ν:ν)	2.7 x 10 ²² (10 yrs, 1:3)	556/ kt.MW.yr (10 yrs, 1:1)	
	δ _{CP} = π /2, 3π/2 (known N.O.)	~8σ	[7 σ, 8 σ]	DUNE has rich physics
	δ _{CP} precision	7~20°	6~16°	opportunities w/ Near Detector.
	δ _{cP} coverage (known NO)	~76 % at 3 σ	65 % at 3 σ	
Sunny Seo, Fermi	MO lab (true: NO)	>3.8 σ (+atm ν) fonalbອີ၉pocida, Italy	> 8 σ for all δ_{CP}	16

Nucleon Decay

S. Mine

Currently, Hyper-K is expected to be world-leading in this measurement.

P → e⁺ π^0 : $\tau > \sim 1 \times 10^{35}$ years (3 σ) P → ν K⁺ : $\tau > \sim 3 \times 10^{34}$ years (3 σ)

Age of the universe:
 1.37 x 10¹⁰ years

Sunny Seo, Fermilab

SuperNova v

J. Migenda

• Next Galactic SN burst could happen any time. \rightarrow We should **be ready**.

ANTARES/ KM3Net

M. Spurio

- ANTARES: first undersea Cherenkov detector (2006-2022)
 - Demonstration of the great potential of deep-sea Neutrino Telescopes
 - Excellent angular resolution, view of Southern sky, competitive sensitivities
 - Constraints on the origin of the IceCube signal
 - Hint of a Galactic neutrino diffuse emission
 - Last results and legacy program to be pursued in the coming year
- KM3NeT: phased approach to next-generation neutrino telescope by 2028
 - Deployment of detection units at a good pace.
 - Now: KM3NeT/ARCA 28 strings KM3NeT/ORCA 18 strings
 - KM3NeT/ORCA and ARCA combine a rich neutrino physics and astrophysics scientific scope, from MeV to PeV energies
 - Unique infrastructure for multidisciplinary program.

- ARCA (Astronomy) @French se
- -- 115 strings, 18 DOMs / string
- -- 31 PMTs/DOM (Total: 64k*3" PMTs)
- ORCA @Italian sea
 -- NMO+ v properties

Quantum Gravity

- In some quantum-spacetime/quantum-gravity models, particles couple to quantum degrees of spacetime in ways that are roughly analogous to ordinary dispersion of light in certain materials
- the needed sensitivity could be reached by studies of in-vacuo dispersion of particles observed from very distant astrophysical sources, like GRBs...
- Had been searching QG from GRB gamma-rays/
- Has found opportunity for QG from GRB neutrinos
- However, IceCube has found no neutrino from GRB
 - \rightarrow Neutrinos might be delayed by 10 min^{*} due to QG.
 - \rightarrow Found non-random signature
 - \rightarrow Will apply this technique to IceCube Gen-II

Sunny Seo, Fermilab

G Amelino-Camelia

2 decades of testing

- several **sub-tone scale** searches ongoing
 - ⁷⁶Ge, **LEGEND-200** (140 kg)
 - ¹³⁰Te, **CUORE** (206 kg)
 - ¹³⁶Xe, **KamLAND-Zen** (745 kg)

C. Wiesinger

- tone-scale era about to start (see talks by R. Brugnera, R. Tsang, M. Girola)
 - probe full inverted ordering scenario
 - test significant normal ordering space

X-section Measurements

Y. Hayato

- 1. Neutrino nucleus interaction measurements are really important for next generation neutrino experiments.
- 2. Currently, there are many activities on measuring x-sections.
- 3. So far, we have troubles on CCQE, resonance production, DIS and nuclear effects.
 - → We hope the discrepancies in these measurements are resolved by new experiments and collaboration w/ theorists.
 - \rightarrow Inter-collaboration activities are crucial.

MINERvA D. Last

- 1. MINERvA results can address question raised above.
- 2. With MINERvA's data preservation product (reco, tools needed to measure x-sec), you can as well answer question raised above.

Sunny Seo, Fermilab

MicroBooNE

- MicroBooNE has completed data taking with 1.56×10²¹ POT BNB data and 2.37×10²¹ POT NuMI data collected
- First low-energy excess results show no evidence of excessive electron- or photon-like excess to explain the MiniBooNE anomaly
- Full 3+1 oscillation analyses were carried out to interpret the MicroBooNE eLEE results under a sterile neutrino oscillation hypothesis
- Progress on precise neutrino-argon cross section measurements in the last few years
- More exciting results from MicroBooNE coming soon

Short Baseline Neutrino (SBN) Status @Fermilab

Efforts to Reduce Systematics for future LBL experiments

Al/ML in ν Physics

- A Multipurpose Graph Neural Network for Reconstruction in LArTPC Detectors. Adam Aurisano
- Deep Learning techniques to search for rare processes in LArTPC-based neutrino experiments. Daisy Kalra
- Machine Learning Techniques for the Event Reconstruction: the JUNO Experiment. Arsenii Gavrikov

Sunny Seo, Fermilab

Summary of Summary

Remaining puzzles in PMNS matrix would be resolved within 20 year+. DUNE, Hyper-K and JUNO

□ Tensions in Sterile v search experiments should be resolved. LSND, MiniBooN, MicroBooNE, (ICARUS, SBND); Nu-4, BEST

□ Absolute mass of v is expected to be measured by KATRIN at m_{β} < 0.3 eV in a few years. Project-8 would measure it at 40 meV level if their R&D is successful, but very challenging! HOLM and ECHo are also promising technologies and could reach sub eV.

- □ Dirac/Majorana nature of v is very important, and I hope it to be answered by the next generation (ton scale) $0v\beta\beta$ exp. LEGEND, nEXO, CUPID etc.
- Astrophysical v: need bigger detectors to be a true neutrino observatory & multi messenger
 IceCube-Gen2, KM3NET
- \Box v X-section: help reducing sys. uncertainty. Channel for new physics search.
- □ Apply AI/ML technique to almost everything you do.