ETHzürich

T2K ND280 Upgrade Status

Xingyu Zhao, on behalf of T2K Collaboration NNN23, Napoli 2023-10-13

Contents

- T2K ND280 upgrade detectors.
- Towards physics: neutrino event reconstruction and
 - selection developments in T2K ND280 upgrade.

Contents

T2K ND280 upgrade detectors.

Towards physics: neutrino event reconstruction and

selection developments in T2K ND280 upgrade.

event reconstruction and T2K ND280 upgrade.

The T2K Experiment

- Tokai-to-Kamioka (T2K) is a long baseline accelerator neutrino experiment located in Japan.
- probability from $\nu_{\mu} (\bar{\nu}_{\mu})$ to $\nu_{e} (\bar{\nu}_{e})$.
- $\sin \delta_{CP} = 0$ rejected with 90% C.L.
- Towards 3σ sensitivity, we need more protons on target (~ 1.5×10^{22}) and lower systematic uncertainties (< 4%).
- Introduce near detector upgrade to increase statistics and reduce systematic uncertainties.

• One of its major goals is to measure CP violation phase δ_{CP} , through measuring neutrino oscillation

ND280 Upgrade Overview

Super Fine-Grained Detector (Super-FGD)

- Super-FGD has ~ 2 million scintillator cubes $(1cm^3)$ made of polystyrene. Target mass is ~ 2.1 tons.
- It is the main place where neutrino interactions happen.
- Advantages compared with current FGD detector:
- (1) Three readout views provide 4π solid angle acceptance.
- (2) 3D fine granularity allows to detect short protons.
- (3) ~ ns time resolution enables to reconstruct neutron kinematics.

SFGD cube

2018 JINST 13 P02006 NIM A936 (2019) 136-138

Super-FGD Hardware

- Super-FGD box panel made of foam sandwiched by carbon / glass fiber skins.
 - Low radiation length and ~ 120k holes for WLS fibers to exit the dark box.
- Light signal transmitted by WLS fibers and received by MPPC S13360-1325PE (~ 2700 pixels) whose surface is mounted on a PCB (8*8 MPPCs).
 - The high dynamic range improves stopping proton and 0 vertex activity measurement.
- FE electronics mainly composed of CITIROC ASIC that digitizes MPPC analogue signal.
 - Measure not only the signal peak with both low gain for stopping protons and high gain for MIPs, but also the charge from time-over-threshold.
 - FPGA has sampling rate ~ 400 MHz.

Super-FGD installation in ND280 basket

MPPC S13360-1325PE

Super-FGD Test and Installation

- Prototype beam tests have been done at CERN (charged \bullet particle beam, JINST 15 P12003 (2020)) and LANL (neutron beam, *arXiv: 2207.02685*).
- Installation on site is ongoing: \bullet
 - Super-FGD has been just installed in ND280 basket.
 - All electronic components produced. Some being tested and ~ half have been installed.
 - Already collected some cosmic events on surface.

z-y plane (crate 5)

x-z plane (crate 2)

A cosmic event with final electronics

track xz distribution 40

High-Angle Time Projection Chamber (HA-TPC)

- Goal is to identify charged particles leaving Super-FGD, especially those going upwards.
- TPC is filled with argon gas $(Ar : CF_4 : iC_4H_{10} = 95 : 3 : 2)$.
- Replace old bulk Micromegas readout module with new resistive Micromegas module (ERAM).
 - Spread charge over multiple pads.
 - Improve spatial resolution and reduce number of 0

HA-TPC Test and Installation

- Prototype beam tests have been done at CERN (Nucl. Inst. and Methods, A 957 (2020) 163286) and DESY (arXiv: 2106.12634).
- Installation on site is ongoing:
- Bottom HA-TPC has been already installed in (**1**) ND280 basket.
- (2) Top HA-TPC will be installed next year.

Real cosmic event collected in ND280 basket

Installation in ND280 basket

Time-of-Flight Detector (TOF)

- 6 TOF planes cover 2 HA-TPCs and Super-FGD. Each plane consists of 20 scintillator bars, readout with 16 MPPCs at both ends of each bar.
- Goal is to measure direction of charged particles and provide veto to reduce background.
- Cosmic muon test has been done at CERN (JINST 17 P01016 (2022)).
- Installation on site is ongoing. Two planes have been already installed in ND280 basket. The rest will wait after top HA-TPC.

All 6 planes have been shipped to J-PARC

Contents

T2K ND280 upgrade detectors.

Towards physics: neutrino event reconstruction and selection developments in T2K ND280 upgrade.

ND280 Upgrade Physics Overview

- With finer 3D granularity of Super-FGD, we are able to:
- Lower down proton reconstruction threshold and tag neutron.
- More precisely measure variables related to

• visible energy
$$E_{vis} = E_{\mu} + T_{p/n}$$
.

• transverse momentum imbalance (TKI)

(e.g. δp_T).

- Goal is to better constrain neutrino interaction uncertainties.
- Need good neutrino event reconstruction and selection performances.

Phys. Rev. D 105, 032010 (2022)

Neutrino Event Reconstruction (MC Study)

2000

1800

1600

1400

1200

1000

800

600

400

200

<u>a</u>

Node

Proton Reconstruction

- In T2K ND280 neutrino energy range, most ^w produced protons in Super-FGD will just stop before escape.
- The proton track is reconstructed with pattern recognition algorithm (DBSCAN + MST).
- The particle identification and momentum measurement are performed with local dE/ dx analysis method, combined with machine learning technique (boosted) decision tree, BDT).
- MC uses single particle simulation (PGUN).

Stopping proton dE/dx pattern

Neutron Reconstruction

- Tag neutrons which are produced in Super-FGD and interact before leaving the detector.
- Measure time-of-flight between neutrino vertex and neutron interaction point to infer neutron kinematics.

Work in progress

Calorimetry Reconstruction

- Crucial to measure visible energy $E_{vis} = E_{\mu} + T_{p/n}$.
- Developing methods to precisely measure energy deposition by considering corrections from e.g. Birk's quenching.
- Currently achieved ~ 1.1%
 resolution for total energy
 deposition, now working on
 single track.

Neutrino Event Selection (MC Study)

- Based on the final state particles reconstructed in the detector, it is not possible to identify the true interaction \bullet mode, instead we use topology to separate different neutrino samples, e.g. $CCO\pi$.
- Preliminary selection on ν_{μ} CC $0\pi Np$ sample has been developed.
- Neutrino events simulated with NEUT. \bullet

Summary

- The T2K ND280 is upgraded with one primary goal to measure $\sin \delta_{CP} = 0$ exclusion in 3σ C.L. through collecting more statistics and reducing systematic uncertainties.
- The installation of ND280 upgrade on site is ongoing. The upgrade detectors, Super-FGD, HA-TPCs and TOFs, have been tested and the performances meet the requirements.
- The developments of neutrino event reconstructions and selections in ND280 upgrade detectors are going in parallel.
- The ND280 upgrade (Super-FGD + bottom HA-TPC + 2 TOFs) is expected to take neutrino beam data from this winter.

Thanks for your attention!

Backup Slides

Reduce Systematic Uncertainty

- The old ND280 is more sensitive to forward going tracks, while SK has 4π coverage. \rightarrow Need upgrade to cover 4π as well.
- CCQE neutrino energy reconstruction is biased reconstruct outgoing hadrons (proton in ν_u and

Supplementary Plots (Physics)

Supplementary Plots (Proton Recon)

Supplementary Plots (Selection)

