Neutrino Physics Program at NA61/SHINE

On Behalf of the NA61/SHINE Collaboration

Lu Ren

RANC

CERN P

ICERN Me

University of Colorado Boulder

Flux Uncertainty

• Neutrino flux uncertainty limits the precision of measurements in all accelerator-based neutrino experiments

Why Hadron Production Measurements?

- Neutrino flux simulation relies on the hadronic interaction models used in FLUKA or GEANT4
 - Very large uncertainty (>20%)
- Important to have constraints on the hadronic processes
 - Proton-target interaction
 - Secondary interactions

NA61/SHINE

- **S**PS **Heavy Ion and Neutrino Experiment**
- Beam
 - Primary proton beam from CERN SPS
 - Secondary beam of proton, kaon, pion, etc.
- Physics program
 - Heavy ions
 - Cosmic-ray production
 - Hadron production for neutrino beams

<u>JINST 9 (2014) P06005</u>

- Two superconducting magnets
- Time-of-flight detectors

- Projectile Spectator Detectors (PSDs)
- Major detector upgrade finalized in 2022

🔁 Lu Ren

Hadron Production Measurements

- Thin-target measurements
 - Total, inelastic and production cross sections
 - Charged and neutral hadron yields from primary interaction
 - Input to reweight flux simulations
- Replica-target measurements
 - Differential production yield measurements from the surface of the target
 - Beam survival probability
 - Input to reweight flux simulations
 - Input to understand beam attenuation

NA61 Data Taking for Neutrino Experiments

2007 - 2010 T2K	Long Shutdown (LS) 1	2015 - 2018 FNAL	LS2	2022 - 2025 T2K, DUNE, etc.	LS3	2027 - ?
--------------------	----------------------------	---------------------	-----	-----------------------------------	-----	-------------

	2 cm Carbon	T2K replica	1.5 cm Carbon	AI	Ве	Ti	NuMI replica	LBNF replica
31 GeV/c	p, <i>π</i> ⁻	р						
60 GeV/c			p, K, π^+	p, π^+	p, π ⁺	р, К		
90 GeV/c			р					
120 GeV/c			р		р	р	р	p*
8 GeV/c					p*			

* Proposed

2007 - 2010 T2K		10	Long Shutdown (LS) 1		n 2015 - 20 FNAL		2018 LS2		2022 T DUN	2 - 2025 Γ2Κ, ΝΕ, etc.	LS3	20	2027 - ?	
		2 Cai	2 cm T2K Carbon replica		K ica	1.5 cm Carbon	AI		Be	Ti	NuMI replica	LBNF replica		
	31 GeV/c	p,	, π¯	р										
	60 GeV/c					р, К, <i>π</i> +	p, π ⁺	p), π^+	р, К			_	
	90 GeV/c					р								
	120 GeV/c	20 GeV/c 3 GeV/c			р			р	р	р	p*			
	8 GeV/c								p*					

* Proposed

Thin Target Measurements for T2K

- Thin target: 31 GeV/c proton on 2 cm graphite target
 - Total cross-section and $\pi^{+/-}$ spectra measurements (Phys. Rev. C84 (2011) 0 034604)
 - K⁺ spectra measurement (<u>Phys. Rev. C85 (2012) 035210</u>) Ο
 - Ο
 - K_{s}^{0} and Λ^{0} spectra measurements (<u>Phys. Rev. C89 (2014) 025205</u>) Total cross-section and π^{+/-}, p, K_{s}^{0} , and Λ^{0} spectra measurements (<u>Eur.</u> Ο Phys. J. C76 (2016) 84)

Thick Target Measurements for T2K

- Replica target: 31 GeV/c proton on 90 cm replica graphite target
 - Methodology, $\pi^{+/-}$ yield measurement (<u>Nucl. Instrum. Meth. A701 (2013) 99-114</u>)
 - \circ $\pi^{+/-}$ yield measurement (<u>Eur. Phys. J. C76 (2016) 617</u>)
 - \circ $\pi^{+/-}$, p, and K^{+/-} yield measurements (<u>Eur. Phys. J. C79 100 (2019)</u>)
 - p beam survival probability measurement (Phys. Rev. D103 012006 (2021))

Thick Target Measurements for T2K

- Replica target: 31 GeV/c proton on 90 cm replica graphite target
 - \circ $\pi^{+/-}$, p, and K^{+/-} yield measurements (<u>Eur. Phys. J. C79 100 (2019)</u>)

p [GeV/c]

Effect on T2K Flux Uncertainty

• Improved T2K flux uncertainty down to ~5%

NNN 2023, October 13th, 2023

2007 - 2010 T2K		10	Long Shutdown (LS) 1		2015 - 2018 FNAL		LS2		2022 T DUN	2 - 2025 Γ2K, NE, etc.	LS3	20	2027 - ?	
		2 Ca	cm Irbon	n T2K replica		1.5 cm Carbon	AI		Be	Ti	NuMI replica	LBNF replica		
	31 GeV/c	p), π¯											
	60 GeV/c					p, Κ, π ⁺	p, π ⁺	ŗ	D, π^+	р, К				
	90 GeV/c					р								
	120 GeV/c					р			р	р	р	р*		
	8 GeV/c								p*					

* Proposed

 Production and inelastic cross sections of protons on carbon, beryllium, and aluminum targets at 60 GeV/c and 120 GeV/c

NNN 2023, October 13th, 2023

- Production and inelastic cross sections for π^+ + C/Be at 60 GeV/c
- Differential cross sections of π^- , π^+ , K^- , K^+ , protons, K^0_{S} , Λ and anti- Λ

• 120 GeV/c p + C neutral hadron multiplicities

NNN 2023, October 13th, 2023

Combined Measurement

FTFP_BERT QGSP BERT

• 120 GeV/c p + C charged hadron multiplicities

arXiv:2306.02961

NNN 2023, October 13th, 2023

Combined Measurement

FTFP BERT

QGSP BERT

Ongoing Analyses for FNAL Experiments

- 60 GeV/c p + C charged and neutral hadron multiplicities
- 90 GeV/c p + C charged and neutral hadron multiplicities
- 120 GeV/c p + NuMI replica target data analysis
- Implementing 120 GeV/c p + C results into <u>PPFX</u>
 - Could be used by all NuMI experiments and DUNE

2007 - 2010 T2K		10	Long Shutdown (LS) 1		2015 - 2018 FNAL		LS2	LS2		2 - 2025 Г2K, NE, etc.	1	LS3	20	2027 - ?	
		2 Ca	cm arbon	cm rbonT2K replica, π⁻<pII		1.5 cm Carbon	AI		Be	Ti	Nı rep	uMI olica	LBNF replica		
	31 GeV/c	ŕ	Ο , <i>π</i> ⁻											_	
	60 GeV/c					р, <mark>К</mark> , <i>π</i> +	p, π ⁺	p) , π ⁺	p, K				-	
	90 GeV/c					р								-	
	120 GeV/c					р			р	р		р	p*		
	8 GeV/c								p*						

* Proposed

2022 - 2025

- 31 GeV/c protons on T2K replica target (2022)
 - 18 times more statistics than 12 years ago, being calibrated
- 60 GeV/c kaon on thin graphite target and 120 GeV/c proton on thin titanium target (2023)
- 120 GeV/c proton on LBNF/DUNE prototype target (2024)
- A new tertiary low-energy (2-13 GeV/c) beamline (2025 beyond LS3)
 - Measurements for the booster beam at Fermilab
 - Secondary interaction at T2K
 - Low-energy neutrinos from spallation sources (i.e. JSNS²)
 - Understanding the production of atmospheric neutrinos

• NA61/SHINE provides unique hadron production measurements to support

the accelerator-based neutrino experiments

- Greatly reduced T2K flux uncertainty
- Recent results will benefit neutrino experiments at Fermilab
- DUNE prototype target data taking foreseen in the coming year
- Low-energy beamline being proposed and studied
- We welcome new collaborators!

