Addressing the challenge of neutrino interaction uncertainties in Hyper-Kamiokande

Claire Dalmazzone, 13th October 2023

On behalf of Hyper-Kamiokande Collaboration

22nd International Workshop on Next Generation Nucleon Decay and **Neutrino Detectors**

Procida (Italy), October 11-13, 2023

FEDERICO II

degli Studi
della Campania Luigi Vanvitelli

Contents

- Hyper-Kamiokande experiment
- HK long baseline program
- Neutrino interaction in HK
- HK plan to reduce systematic uncertainties

Hyper-Kamiokande experiment Hyper-Kamiokande The detector

- Next generation water Cherenkov neutrino detector in Japan. In construction, start data-taking in 2027
- 260kt of water: fiducial volume ~ 8 times SK!

Excavation reached center of cavern dome in July Claire Dalmazzone, NNN23, Procida (Italy)

The Hyper-Kamiokande detector

See Katsuki Hiraide's talk

Hyper-Kamiokande experiment A vast physics program

- Nucleon decay: evidence for a Grand Unified Theory
- Neutrino astrophysics: Supernovae and Diffuse Supernovae Background
- Solar neutrinos

Neutrino oscillation: atmospheric + accelerator neutrinos

Claire Dalmazzone, NNN23, Procida (Italy)

See Katsuki Hiraide's talk

Long baseline program **Overview**

Same baseline as T2K with upgrades:

Claire Dalmazzone, NNN23, Procida (Italy)

$\sqrt{\nu_{\mu}}$ ($\bar{\nu}_{\mu}$) beam produced at J-PARC accelerator facility: flux peaked at 600 MeV in HK/SK directions

Long baseline program **Overview**

Same baseline as T2K with upgrades:

 $\sqrt{\nu_{\mu}} (\bar{\nu}_{\mu})$ beam produced at J-PARC

 $\sqrt{\text{Near detectors}}$ measure flux and interaction cross-section before oscillation

Claire Dalmazzone, NNN23, Procida (Italy)

Upgraded ND280 (280m) + new Intermediate Water Cherenkov Detector (IWCD) at ~1km

IWCD: vertically movable (varying off-axis angle)

Long baseline program **Overview**

Same baseline as T2K with upgrades:

 $\sqrt{\nu_{\mu}}(\bar{\nu}_{\mu})$ beam produced at J-PARC

 $\sqrt{Far detector}$ (2.5° off-axis) $\nu_e(\bar{\nu}_e)$ appearance $\nu_{\mu} (\bar{\nu}_{\mu})$ disappearance

HK fiducial volume 8 times larger than SK SK: 39m×41m

Claire Dalmazzone, NNN23, Procida (Italy)

Vear detectors measure flux and interaction cross-section before oscillation

HK: 68m×71m

Long baseline program **Physics goal** $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{24} \end{pmatrix}$

LBL program sensitive to combination Some questions remain unanswered:

✓ Mass ordering?

 $\sqrt{\theta_{23}}$ octant?

Sensitivity with matter effects: use atmospheric neutrinos

violation?

$$\theta_{23} \\ \theta_{23} \\ \theta_{13} \\ e^{i\delta_{CP}} \\ 0 \\ e^{i\delta_{CP}} \\ e^$$

h of
$$\Delta m^2_{32}$$
, $heta_{23}$, δ_{CP} and $heta_{13}$

Long baseline program **Physics goal**

LBL program sensitive to combination of Δm_{32}^2 , θ_{23} , δ_{CP} and θ_{13}

Some questions remain unanswered:

✓ Mass ordering? $\checkmark \theta_{23}$ octant? CP violation?

Claire Dalmazzone, NNN23, Procida (Italy)

Hyper-Kamiokande

Long baseline program **Physics goal** $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{24} \end{pmatrix}$

LBL program sensitive to combination Some questions remain unanswered:

 \checkmark Mass ordering?

Sensitivity with ν_e and $\bar{\nu}_e$ $\sqrt{\theta_{23}}$ octant? samples

CP violation?

Claire Dalmazzone, NNN23, Procida (Italy)

$$\theta_{23} \\ \theta_{23} \\ \theta_{23} \\ \theta_{23} \\ \theta_{23} \\ \theta_{23} \\ \theta_{23} \\ \theta_{13} \\ e^{i\delta_{CP}} \\ 0 \\ e^{i\delta_{CP}} \\ e^{i\delta_{CP}}$$

h of
$$\Delta m^2_{32}$$
, $heta_{23}$, δ_{CP} and $heta_{13}$

Hint of maximal CP violation with enhanced ν_{ρ} appearance from T2K. Credit: https://j-parc.jp/c/en/press-release/2020/04/16000517.html

Long baseline program **Oscillation parameters measurements**

The oscillation/survival probability depends on the energy and the oscillation parameters. To measure the oscillation parameters, we need to:

- Count the $\nu_e(\bar{\nu}_e)/\nu_\mu(\bar{\nu}_\mu)$
- Measure their energies

At 600MeV, the most common neutrino interaction is the Charged Current Quasi-Elastic

Claire Dalmazzone, NNN23, Procida (Italy)

Hyper-Kamiokande

$$(M_n - E_b)E_l - m_l^2/2 + m_n E_b - E_b^2/2 + (m_p^2 - m_n^2)/2$$

$$M_n - E_b - E_l + p\cos\theta$$

Reconstructed neutrino energy from measured lepton energy based on CCQE interaction with one ejected nucleon.

> But the reality is more complex... See Hayato-san's talk

Long baseline program **Oscillation parameters measurements**

The oscillation/survival probability depends on the energy and the oscillation parameters. To measure the oscillation parameters, we need to:

- Count the $\nu_e(\bar{\nu}_e)/\nu_\mu(\bar{\nu}_\mu)$
- Measure their energies

Five event samples* are considered:

- ν beam, 1-ring μ -like
- $\bar{\nu}$ beam, 1-ring μ -like
- ν beam, 1-ring e-like
- $\bar{\nu}$ beam, 1-ring e-like
- ν beam, 1-ring e-like + 1 decay e

Claire Dalmazzone, NNN23, Procida (Italy)

From the decay chain of a pion produced during the neutrino interaction

* Based on T2K event samples in latest published results (ref. 1)

Long baseline program **Sources of uncertainties**

Flux in

detector

Event rate measured in detector

Simultaneously constrained at the near detectors + external experimental constraints*

Claire Dalmazzone, NNN23, Procida (Italy)

* e.g.: see Lu Ren's talk on NA61/SHINE neutrino program to reduce flux uncertainties due to hadron production

Long baseline program Oscillation parameters measurements

Expected event rates in e-like samples: impact of δ_{CP}

Long baseline program **Oscillation parameters measurements** Expected event rates: impact of $\sin^2 \theta_{23}$

Long baseline program **Oscillation parameters measurements**

Expected event rates in μ -like samples: impact of Δm_{32}^2

Systematic uncertainties

Expected uncertainty on event rates in each sample at HK with T2K ND280 constraints* on flux+cross-section parameters

11	ring	μ-Ι	ike
----	------	-----	-----

	1 ring μ-like		1 ring e-like			
Error source	v-mode	vbar-mode	v-mode CCQE-like	vbar-mode CCQE-like	v-mode CC1π-like	v-/vbar- mode CCQE-like
Flux + Cross section	3,27 %	2,95 %	4,33 %	4,37 %	4,99 %	4,52 %
Detector + FSI + SI	3,22 %	2,76 %	4,14 %	4,39 %	17,77 %	2,06 %
All systematics	4,63 %	4,10 %	5,97 %	6,25 %	18,49 %	4,95 %

Systematic uncertainties

Expected uncertainty on event rates in each sample at HK with Improved ND constraints* on flux+cross-section parameters

	1 ring μ-like		1 ring e-like			
Error source	v-mode	vbar-mode	v-mode CCQE-like	vbar-mode CCQE-like	v-mode CC1π-like	v-/vbar- mode CCQE-like
Flux + Cross section	0,81 %	0,72 %	2,07 %	1,88 %	2,21 %	2,28 %
Detector + FSI + SI	1,68 %	1,58 %	1,54 %	1,72 %	5,21 %	0,97 %
All systematics	1,89 %	1,74 %	2,56 %	2,53 %	5,63 %	2,45 %

Claire Dalmazzone, NNN23, Procida (Italy)

*The improved systematic constraints are obtained from the T2K constraints where we shrink the errors on systematic parameters taking into account:

- The statistics increase
- The expected effects of the upgrades

Systematic uncertainties Impact on the sensitivity

Systematic uncertainties will impact precision measurements, the potential discovery of CP violation...

At 600MeV, the most common neutrino interaction is the Charged Current Quasi-Elastic. But the reality of neutrino interactions is more complex.

Uncertainties on neutrino interactions and cross-sections will impact:

- Expected event rates
- Energy reconstruction
- Model extrapolation from ND to FD

Need a good modelling of those complex interactions! Take advantage of knowledge acquired with T2K

- 1. 1p1h (CCQE): interaction with a nucleon + 1 nucleon ejected Need to take nuclear effects into account
- 2. 2p2h
- 3. $CC1\pi$
- 4. Deep Inelastic Scattering
- 5. Final State Interaction

Claire Dalmazzone, NNN23, Procida (Italy)

1. 1p1h

- 2. **2p2h**: interaction with two nucleons instead of 1.
- 3. CC1 π
- 4. Deep Inelastic Scattering
- **Final State Interaction**

Claire Dalmazzone, NNN23, Procida (Italy)

- 1. 1p1h
- 2. 2p2h
- 3. **CC1** π : a pion is produced by the neutrino interaction
- 4. Deep Inelastic Scattering
- 5. Final State Interaction

Claire Dalmazzone, NNN23, Procida (Italy)

Example of CC1 π via a Δ^{++} resonance

- 1. 1p1h
- 2. 2p2h
- 3. CC1 π
- **Deep Inelastic Scattering:** very complicated final state 4.
- **Final State Interaction**

- 1. 1p1h
- 2. 2p2h
- 3. CC1 π
- 4. Deep Inelastic Scattering
- particles in the nuclear medium

Claire Dalmazzone, NNN23, Procida (Italy)

5. Final State Interaction: final state changed by interactions of produced

Plan to reduce systematics

- of uncertainties in LBL experiments.
- for **HK**.
- the near detectors. Some upgrades of T2K ND will be implemented to more efficiently constrain systematics.

Claire Dalmazzone, NNN23, Procida (Italy)

Good modelling of neutrino interaction necessary to optimise the parametrisation

• **T2K regularly updates** this parametrisation: this **knowledge** will be very important

• Most cross-section systematics constrained, with the flux systematics, thanks to

Plan to reduce systematics ND280 upgrade(s)

For T2K-II, ND280 already being upgraded*. **P0D** detector replaced by: • A Super-Fine-Grained Detector (2.1 million 1cm³ scintillating cubes): higher reconstruction

- efficiency at high scattering angles
- Two High Angle TPCS (below and above SFGD)
- 6 **Time of Flight** panels: to measure direction of particles

Claire Dalmazzone, NNN23, Procida (Italy)

R&D is ongoing for the upgrade of the second half of ND280 for HK \rightarrow ND280 upgrade ++ Example: TPCs replaced by a **10 tons** SFGD, final fiducial mass multiplied by 5 compared to old ND280

* See ref. 2 and Xingyo Zhao's talk on ND280 upgrade for more details

Plan to reduce systematics **IWCD**

a lot of advantages to reduce neutrino interaction uncertainties:

- Same target material as FD
- Vertically movable = varying off-axis angle: allows to scan different flux configurations and increase statistics at higher neutrino energies (constrain non QE interactions)

Claire Dalmazzone, NNN23, Procida (Italy)

Plan to build a vertically movable water Cherenkov detector at ~1km from target. Would present

Credit: Evangelia Drakopoulou, POS 2017

Plan to reduce systematics **Example:** $\nu_e/\bar{\nu}_e$ cross-section ratio uncertainty

- $\nu_e/\bar{\nu}_e$ cross-section ratio uncertainty measurement challenging due to very low statistics
- In T2K, ND280 $\nu_e(\bar{\nu}_e)$ selection not pure/efficient enough to constrain this systematic: use theoretical constraint of 4.9%.
- For HK, experimentally constrain $\nu_{\rho}/\bar{\nu}_{\rho}$ cross-section ratio with ND280 upgrade (++) and IWCD

Plan to reduce systematics **Example:** $\nu_e/\bar{\nu}_e$ cross-section ratio uncertainty

Estimation of ND280 constraint on $\sigma(\nu_{\rho})/\sigma(\bar{\nu}_{\rho})$ with upgrade or upgrade ++ mass, pre-upgrade efficiency and pre-upgrade or 100% purity.

HK Years (2.7E21 POT 1:3 ν : $\overline{\nu}$)

Claire Dalmazzone, NNN23, Procida (Italy)

With only ND280 upgrade, could reach a \sim **7.5%** uncertainty or below with the upgrade ++

Plan to reduce systematics **Example:** $\nu_{\rho}/\bar{\nu}_{\rho}$ cross-section ratio uncertainty

With only IWCD, could reach a $\sim 3.7\%$ uncertainty

With ND280 upgrade (++) and IWCD, the goal is to go **below 3%** uncertainty after 10 years of HK-LBL

Claire Dalmazzone, NNN23, Procida (Italy)

Significance level to exclude the CP-conserving values (0 and $\pm \pi$) of δ_{CP} after 10 years with HK.

* See ref. 4 for more details

Conclusion

- Hyper-Kamiokande is a next generation water Cherenkov neutrino detector with a vast physics program. Construction on-going, start data-taking in 2027
- The long baseline program will benefit from the knowledge acquired with T2K and a much faster accumulation of statistics to measure challenging quantities like δ_{CP}
- The oscillation parameters measurements will eventually be limited by systematic effects and neutrino interactions are a major source of systematic uncertainties.
- Reducing these uncertainties will be possible thanks to a good modelling of the neutrino interactions in HK and to the improved and new near detectors: ND280 and IWCD.

Thank you!

References

- 1. The T2K Collaboration, *Measurements of neutrino oscillation parameters from the T2K experiment using* 3.6×10^{21} *protons on target*, 2023, <u>arXiv:2303.03222</u>
- 2. Thorsten Lux (T2K), *The upgrade of the T2K ND280 detector*, <u>Journal of Physics:</u> <u>Conference Series, 2374(1):012036</u>, nov 2022
- 3. Ferrero A. (T2K), *The ND280 Near Detector of the T2K experiment*, <u>AIP Conf. Proc.</u>, <u>1189, 77-82</u>, 2009
- 4. Tailin Zhu (Hyper-Kamiokande), Long-baseline neutrino oscillation sensitivities with Hyper-Kamiokande and impact of Intermediate Water Cherenkov Detector, In Proceeding of Neutrino Oscillation Workshop: <u>PoS(NOW2022), volume 421, page 028, 2023</u>

Claire Dalmazzone, NNN23, Procida (Italy)

Back-up

Systematic uncertainties **HK Improved systematics error model**

The HK Improved error model is built from the T2K one by shrinking the uncertainties on each systematic parameter to take into account the increased statistics and the ND upgrades:

- 1. Errors divided by sqrt of beam exposure increase compared between T2K and HK at 10 years
- 2. Further factor 2-3 reduction for come cross-section parameters based on studies made on ND280 upgrade and IWCD sensitivity
- 3. Error on $\nu_{\rho}/\bar{\nu}_{\rho}$ cross-section ratio fixed to 2.7% (HK goal motivated by studies on **IWCD** sensitivity

Neutrino interactions uncertainties Hyper-Kamiokande Interactions not constrained at ND

oscillation analysis:

- NC γ : NC interaction producing a photon. Background for e-like samples in ND280.
- Background coming from CC interactions of antineutrinos with low momentum pion production that is thus missed.
- Shape of the energy dependence of 2p2h interactions.

Claire Dalmazzone, NNN23, Procida (Italy)

Other cross-section uncertainties are currently not constrained with ND280 data in T2K

Plan to reduce systematics **Example:** $\nu_{\rho}/\bar{\nu}_{\rho}$ cross-section ratio uncertainty

•
$$P_{osc}(\delta_{CP}) = f\cos\delta_{CP} + g\sin\delta_{CP} + h$$

- $\nu_{\rho}/\bar{\nu}_{\rho}$ xsec error mostly limits the resolution of CP-odd term
- Gradient of CP-odd (-even) term is maximum at $\sin \delta_{CP} = 0(\pm 1)$
- $\nu_{\rho}/\bar{\nu}_{\rho}$ xsec error expected to impact δ_{CP} resolution mostly at $\sin \delta_{CP} = 0$

Claire Dalmazzone, NNN23, Procida (Italy)

 $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m^2_{32}=2.509\times10^{-3} \text{eV}^2/\text{c}^4$

Octant degeneracy

