

Updated Results from the Daya Bay Experiment

Runze Zhao

Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS) (On behalf of the Daya Bay Collaboration)

NNN23, Procida, 11 Oct 2023

Measure θ_{13} with reactor $\overline{\nu}_e$

relative measurements with Far/Near ratio

Survival Probability

Daya Bay

Antineutrino Detectors (ADs)

• Detect inverse β-decay reaction (IBD)

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ $\downarrow \stackrel{\sim 180 \ \mu s}{\rightarrow} + p \rightarrow d + \gamma (2.2 \ \text{MeV})$ $\downarrow + Gd \rightarrow Gd^{*}$ $\stackrel{\sim 30 \ \mu s}{\text{for } 0.1\% \ \text{Gd}} \qquad \downarrow \text{Gd} + \gamma \text{'s } (\sim 8 \ \text{MeV})$

- 20-t 0.1% Gd-loaded liquid scintillator as target—
- 21-t LS as gamma catcher
- 40-t mineral oil as shielding
- 192 photomultiplier tubes (PMTs)
- Water pools as shielding against cosmic muons and neutrons
- Provide two optically decoupled Cherenkov counters

Brief History of Onsite Operation

- Detector commissioning on 15 Aug 2011
- Collection on physics data began on 24 Dec 2011
- Collection on physics data ended on 12 Dec 2020
- Decommissioning: 12 Dec 2020 31 Aug 2021

Data Collection

• Operational statistics:

• Three physics runs:

Configuration	EH1	EH2	EH3	Start date – End date	Duration (days)
6-AD	2	1	3	24 Dec 2011 – 28 Jul 2012	217
8-AD	2	2	4	19 Oct 2012 – 20 Dec 2016	1524
7-AD	1	2	4	26 Jan 2017 – 12 Dec 2020	1417
Total					3158

• Data available for analyses: ~ 2700 days

Oscillation Parameters: Improvements

• Statistics of nGd data

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2023 (PRL 130, 161802)	3158	2,236,810	2,544,894	764,414	5,546,118

• Analysis:

Energy Calibration

- Electronics non-linearity calibrated at the channel-by-channel level
- Improvement on non-uniformity correction
- New correlated background after 2017
 - Remove additional very rare PMT flashers
 - Suppress and identify untagged muon events
- Correlated background
 - New approach to determine the ⁹Li/⁸He background

Non-linear Energy Response

• Due to nature of liquid scintillator (LS) and charge measurement of electronics

Improved Non-uniformity of Energy Scale

- Additional non-uniformity on top of already-corrected geometric non-uniformity
 - Residual effect of the Earth magnetic field
 - Dead PMTs or high-voltage supply channels
- Corrections
 - Use γ 's from spallation-neutron capture on Gd and α 's from natural radioactive isotopes
 - Time dependent, referencing to the $\gamma^\prime s$ from spallation-neutron capture

• The largest additional correction is about 3%

Energy Scale

Daya Ba

- Gain of PMTs
 - Single-photonelectron dark noise
 - Weekly LED monitoring
- Energy calibration
 - Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
 - Spallation neutrons
 - Natural radioactivity

▲ Alpha from natural radioactivity ◇ Gamma from natural radioactivity

Relative uncertainty in energy scale ~0.2%

Selection of IBD Candidates

- Remove flashing PMT evengs
- Veto muon events
- Require 0.7 MeV < E_{prompt} < 12 MeV, 6 MeV < $E_{delayed}$ < 12 MeV
- Neutron capture time: $1 \mu s < \Delta t < 200 \mu s$
- Multiplicity cut: select time-isolated energy pairs

	Efficiency	Correlated	Uncorrelated			
Target protons	-	0.92%	0.03%			
Flasher cut	99.98%	0.01%	0.01%			
Delayed energy cut	92.7%	0.97%	0.08%			
Prompt energy cut	99.8%	0.10%	0.01%			
Multiplicity cut		0.02%	0.01%			
Capture time cut	98.7%	0.12%	0.01%			
Gd capture fraction	84.2%	0.95%	0.10%			
Spill-in	104.9%	1.00%	0.02%			
Livetime	-	0.002%	0.01%			
Combined	80.6%	1.93%	0.13%			

Detection efficiencies

Background

Daya Ba

- Uncorrelated
 - Accidental
- Correlated
 - Fast neutron
 - Produced outside of the AD but enters the active volume of the AD
 - > ⁹Li/⁸He
 - Spallation product produced by cosmic-ray muons inside the AD
 - ➢ ²⁴¹Am-¹³C
 - Neutron calibration source resides inside the ACU
 - ▶ ¹³C(α,n)¹⁶O
 - A from decay of natural radioactive isotope in the liquid scintillator
 - Residual PMT flasher
 - ≻ Muon-x

Residual PMT flashers

- Located near the top of some ADs
- Removed by cutting on Kurtosis and time_PSD_local_RMS
- After rejecting residual flashers
 - Negligible contamination in IBD sample
 - Retain 99.997% of the IBD candidates

A residual flasher event

Muon-x Background

- Gradual failure of PMTs in the inner water shield (IWS) since Jan 2017
 - Reduction in muon detection efficiency
 - Muon decays and additional spallation (muon x) in the top hald of some ADs
- Lower the hit multiplicity of PMTs (nHit) in IWS from 12 to 6 to tag muons
 - Reject ~80% of muon decays
 - Extend cut on E_{prompt} from 12 MeV to 250 MeV to determine the rate and spectrum for fast neutron and muon x

⁹Li/⁸He Background

- β-n decay
 - $-\tau_{Li} = 257.2 \text{ ms}$ $\tau_{He} = 171.7 \text{ ms}$
- Perform a multi-dimensional fit
 - Time interval after the preceding muon (t_{IBD} t_{μ})
 - Prompt energy (E_{prompt})
 - Distance between the prompt and delayed signals (ΔR)
 - Low-energy (E_{vis} < 2 GeV) and high-energy (E_{vis} > 2 GeV) muon samples from all three halls simultaneously

14

AD Performances

• IBD candidates including background (<3%)

Antineutrino detectors in the same hall have similar performances

IBD Rate (background subtracted)

Daya Bay

- Side-by-side comparison
 - measurements consistent with predictions

Errors include relative detection efficiency of 0.13%

- Correlation with operation of reactors
 - Expectations based on weekly reactor operational information
 - Measurements track expectations

Prompt-energy Spectra

The best-fit prompt energy distribution is in excellent agreement with the observed spectra in each experiment hall.

Improved $\sin^2 2\theta_{13}$ and Δm^2_{32}

Present Global Landscape

19

• Compare Daya Bay's current results with published results

First Evidence of Reactor $\overline{\nu}_e$ with E > 10 MeV

- Can come from high-Q β-decay of short-lived isotopes, e.g. ^{88,90}Br, ^{94,96,98}Rb •
- Use the 1958-day dataset to extract IBD and background event together from an event-by-• event multi-dimensional fit

at 6.2σ

- 3% more for 6-8 MeV, 29% less for 8-11 MeV
- Extrapolated HM: Larger disagreement above 7 MeV

Summary

Daya Bay:

- □ Finished data taking on 12 Dec 2020
- Acquired world's largest sample of reactor antineutrinos to date
- \Box Obtains the world's most precise determination of sin²2 θ_{13}
- \Box Provides one of the best measurements of $|\Delta m^2_{32}|$
- □ Yields leading results on other topics not covered here such as
 - Search for a light sterile neutrino
 - Measurement of absolute flux and spectrum of reactor $\overline{\nu}_e$
 - Evolution of absolute reactor $\overline{\nu}_e$ flux and spectrum
- > Will have more results to be reported in the future, for example:
 - Updated results on oscillations parameters with nH samples

Backup Slides

PRL 130 (2023) 161802

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2689.156	2501.531
$arepsilon_{\mu} imesarepsilon_{m}$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513
Accidentals $[day^{-1}]$	7.11 ± 0.01	6.76 ± 0.01	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast $n + muon-x [day^{-1}]$	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
${}^{9}\text{Li}/{}^{8}\text{He} [\text{AD}^{-1} \text{ day}^{-1}]$	2.92 ± 0.78		2.45 ± 0.57		0.26 ± 0.04			
241 Am- 13 C [day-1]	0.16 ± 0.07	0.13 ± 0.06	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
$^{13}{ m C}(lpha,{ m n})^{16}{ m O}[{ m day}^{-1}]$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$\overline{\nu}_e \text{ rate } [\mathrm{day}^{-1}]$	657.16 ± 1.10	685.13 ± 1.00	599.47 ± 0.78	591.71 ± 0.79	75.02 ± 0.18	75.21 ± 0.18	74.41 ± 0.18	74.93 ± 0.18

Accidentals

Efficiency of Multiplicity Cut

Error Budget

• Based on Asimov sample:

First Evidence of Reactor $\bar{\nu}_e$ with E > 10 MeV

• an event-by-event multi-dimensional fit

PRL 129 (2022) 041801

$$F(oldsymbol{r};oldsymbol{\Delta t},z,w) = \sum_p r_p f_p(oldsymbol{\Delta t}) h_p(z) k_p(w) \qquad \chi^2(oldsymbol{r}) = -2 \sum \left[\log F(oldsymbol{r};oldsymbol{\Delta t},z,w)
ight] + g(oldsymbol{\epsilon})$$

- p: event types (IBD, cosmogenic isotopes, fast neutron)
- r_p: ratio of number of type-p events over the total event number in each E_{prompt} bin
- h(z): distribution of vertical vertex coordinates z of prompt signal
- f(**Δt**): distribution of time difference **Δt** between IBD candidate and preceding muons
- k(w): distribution of the weighted reactor power w when event occurred
- g(ε): constraints on nuisance parameters describing the above distributions

