Latest neutrino oscillation results and prospect from IceCube NNN Workshop 2023, Procida

A. Trettin for the IceCube Collaboration, 12.10.2023

The University of Manchester

Atmospheric Neutrinos and IceCube

Atmospheric Neutrinos

Atmospheric Neutrino Oscillations

Approximate oscillation probability neglecting Δm_{12}^2 and matter effects:

Measure **energy, zenith** angle and compute flavor proxy

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4 |U_{\mu3}|^{2} (1 - |U_{\mu3}|^{2}) \sin^{2} \left(\Delta m_{31}^{2} L/(4E)\right)$ $\simeq 1 - \sin^{2}(2\theta_{23}) \sin^{2} \left(\Delta m_{31}^{2} L/(4E)\right)$

ν_{μ} disappearance

Neutrino Interactions in IceCube: Idealized

Charged-current ν_{μ} interactions

DeepCore Event Sample

Trigger and Filter Reducing background from noise and atm. muons

"Golden Events Sample"

Geometric Track Fit

Energy Reconstruction

Reconstruction paper: <u>arXiv:2203.02303</u>

- Reconstructs only very clean track-like events
- Goodness-of-fit variables used in BDT as PID

Two Samples

L5 Filtered Sample

- Machine Learning model trained on simulation
- Zenith, energy, and PID score from one model

Two Samples

"Golden Events Sample"

L5 Filtered Sample

CNN Reconstructed Sample

Proceedings: <u>https://pos.sissa.it/444/1143/pdf</u>

Analysis Setup

alternatively: Poisson LLH

Systematic Uncertainties Flux + Cross-section

Atmospheric Flux

Baseline flux by Honda et al. modified by spectral index • $(\Delta \gamma)$ and meson $(K^{\pm}, \pi^{+}, \pi^{-})$ production scale factors

$$\Phi_{\rm sys} = (\Phi_{\rm nom} \cdot \Delta \Phi_{\rm nom}) + \left(b \cdot \frac{d\Phi_{\rm nom}}{dB}\right)$$

Cross-section

- Axial masses for resonant and quasi-elastic scattering (varied in GENIE event generator)
- DIS uncertainty interpolating between GENIE and CSMS cross-sections

Formaggio et al. (2013)

Detector Properties DOM Efficiency, Hole Ice, and Bulk Ice Parameters

Hole Ice

Two parameters modifying ● angular acceptance due to hole-ice

DOM Efficiency

• Global scale parameter

Results of Three-Flavor Measurement Constraints on atm. mass splitting and mixing angle

CNN Reco Sample

Proceedings: <u>https://pos.sissa.it/444/1143/pdf</u>

eV-scale Sterile Neutrino Search **Using the Golden Sample**

Signal at
$$\Delta m^2_{41} = 1 \,\,\mathrm{eV^2}$$

Signal Significance in Analysis Binning

-4

Sterile Search Results

- No signal of sterile neutrinos observed
- Marginalized limits (assuming Wilks' theorem with 1 d.o.f.):

 $|U_{\mu4}|^2 < 0.0534 \ (90 \% \text{ C} \cdot \text{L}), \ 0.0752 \ (99 \% \text{ C} \cdot \text{L})$ $|U_{\tau 4}|^2 < 0.0574 \ (90 \% \text{ C} \cdot \text{L}), \ 0.0818 \ (99 \% \text{ C} \cdot \text{L})$

- Feldman-Cousins spot-checks suggest these are conservative limits
- NMO approx. degenerate with sign of $\cos(\delta_{24})$ \rightarrow result is effectively marginalized over NMO
- Constraint on $|U_{\tau 4}|^2$ stronger than global unitarity constraint (Hu et al. 2021)

Measurements using TeV-scale Atmospheric Neutrinos

Matter-Enhanced Sterile Neutrino Search Exploiting the MSW effect and Parametric Resonance

Matter Enhanced Sterile Search: Results Improved over the 2020 result

- Result compatible with previous analysis

Search for Decoherence Effects Testing Quantum Gravity with Atmospheric Neutrinos

 \rightarrow World's strongest constraints on decoherence effect for all $n \leq 3$

3

2

Energy Power n

- Developed a **new DeepCore sample** with improved neutrino purity and more live time than any previous DeepCore analysis
- Sterile neutrino search with DeepCore in the 3+1 paradigm assuming mass splitting $> 1 \text{ eV}^2$ using • a "golden sample" of very track-like events
 - Strongest limit on $|U_{\tau 4}|^2$ to date, competitive limit on $|U_{\mu 4}|^2$
- Three-flavor result using new ML reconstruction
 - Most precise Δm^2_{32} and $heta_{23}$ measurement with atmospheric neutrinos to date
- Improved matter-enhanced sterile neutrino search using TeV-scale atmospheric neutrinos giving improved exclusion over 2020
- **Search for decoherence effects** producing world-leading exclusion for quantum-gravity induced decoherence parameter

And now, a look into the future...

Summary of Results

IceCube Upgrade **2 MT of Dense Instrumentation for Low Energy Measurements**

mDOM

D-Egg

Credit: S. Niedworok

Credit: M. Shimizu

Aya Ishihara, The IceCube Upgrade — Design and Science goals, (arXiv:1908.09441)

- **Denser instrumentation** for energy threshold ~ 1 GeV ullet
- Higher event rate about 4x DeepCore

IceCube Upgrade **Expected Oscillation Sensitivity Improvements**

The future is exciting!

Upgrade sensitivity study: <u>arXiv:2307.15295</u>

Thank you!

Neutrino Tomography of the Earth Recent Sensitivity Study using the FLERCNN Sample

Earth Density Profile	Layer Boundaries [km]	Layer Density [g/cm³]	Electron Number Density Y _e
PREM	12 Layers	12 Densities	0.5
Jniform Density	1 Layer	5.53	0.5

Neutrino Interactions in DeepCore: Realistic

Charged-current ν_{μ} interactions

"tracks"

"cascades"

Event Selection Trigger + Online Filter

- Trigger: at least three DOMs fulfill "hard local coincidence" (HLC) within DeepCore fiducial volume
- Online filter: veto event when hits outside DeepCore compatible with muon hypothesis
- Events passing filter sent North via Satellite

Offline Filter Reducing background from noise and atm. muons

Offline Filter Reducing background from noise and atm. muons

Final Sample Cuts

Event PID BDT Golden Event Sample

Oscillation Signal Standard three-flavor atmospheric neutrino oscillations

→ Baseline θ_{23} close to maximal → less disappearance when increased

→ Increasing Δm_{23}^2 moves osc. minimum up

Detector Systematics Implementation Bin-wise gradients

- Linear fit in each bin to estimate re-weighting factor
- Effect of DOM efficiency strongly depends on assumed Δm_{32}^2
- Solution: Fit over grid in Δm^2_{32} , piecewise-linear interpolate all gradients

Effect of increasing DOM eff. by +10%

Treatment of Detector Systematics Why a different treatment is needed

- In three-flavor analysis: **bin-wise** gradients
- Detector response depends on assumed oscillation parameters
 - need to decouple detector response from oscillations, flux, etc.
 - new statistical method to get event-wise gradients that decouple detector response from flux and oscillation

nuSQuIDS in one slide

• formulate problem in interaction (Dirac) picture

$$H_s(t) = H_0 + H_1(t)$$

• operators evolve with H_0 (exactly solvable part)

$$\bar{O}_I(t) = e^{iH_0t}O_S e^{-iH_0t}$$

• state densities evolve with $H_1(t)$

$$\partial_t \bar{\rho}_I(t) = -i[\bar{H}_{1,I}(t), \bar{\rho}_I(t)]$$

• probability to arrive in flavor state *i* :

$$p_i(t) = \operatorname{Tr}(\bar{\Pi}^{(i)}(t)\,\bar{\rho}_I(t))$$

projection operator on flavor state i evolved with H_0

Two Kinds of Low-Pass Filtering

Survival probability of a directly up-going muon neutrino in the presence of 0.1 eV² sterile neutrinos with low-pass filtering applied to the trace operation.

- Replace very fast oscillations by their average amplitude
- Allows calculation on grid

Applied to numerical integration

- Filter RHS of time evolution equation
- Greatly speeds up numerical integration

Low-Pass Filtering

Artifacts due to fast oscillations

Fast Oscillation Filtering

events in 8 years

Already strongly constrained

Why set $|U_{\rho 4}| = 0?$

Expecting no leading-order effect in $\nu_{\mu} \rightarrow \nu_{\mu}$ channel Meloni, Tang & Winter (2010)

 $U = R_{34}(\theta_{34}, 0)R_{24}(\theta_{24}, 0)R_{14}(\theta_{14}, 0)R_{23}(\theta_{23}, \delta_3)$ $\times R_{13}(\theta_{13}, \delta_2)R_{12}(\theta_{12}, \delta_1).$

Analytical expression assuming $\Delta m_{41}^2 \gg \Delta m_{31}^2$ and

long baseline (measuring Δm_{31}^2 , Δm_{41}^2 averaged out):

$$\mathcal{P}_{ee} = 1 - 2s_{14}^2 - 4s_{13}^2\Delta_{31}^2 \frac{\sin^2(\Delta_{31} - \Delta_e)}{(\Delta_{31} - \Delta_e)^2},$$

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/(4E)$

$$\mathcal{P}_{\mu\mu} = \cos^2(\Delta_{31})(1 - 2s_{24}^2) + 8\hat{s}_{23}^2\sin^2(\Delta_{31}) + c_{12}^2\Delta_{12}\sin(2\Delta_{31}) +$$
(13)

 $2s_{24}s_{34}\cos\delta_3\Delta_n\sin(2\Delta_{31}) - 2s_{13}^2\Delta_{31}\cos(\Delta_{31})$ $\times \frac{(\Delta_{31} - \Delta_e)\Delta_e \sin(\Delta_{31}) - \Delta_{31} \sin(\Delta_{31} - \Delta_e) \sin(\Delta_e)}{(\Delta_{31} - \Delta_e)^2}$ (14)

Approximate Vacuum Oscillation Equations Long Baseline 3+1 Model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i < j} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}(\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\alpha j}^{*}U_{\alpha j}^{*}U_{\alpha j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\alpha j}^{*}U_{\alpha j}^{*}U_{\alpha j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\alpha j}^{*}U_{\alpha j}^{*}U_{\alpha j}]\sin(2\Delta_{ij}) + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\alpha j}]\sin($$

Simplifying Assumptions:

•
$$\Delta_{41} = \Delta_{42} = \Delta_{43} \gg \Delta_{32}$$

- Δ_{32} is measureable
- $\Delta_{21} = 0$ (neglect solar mass splitting)
- $\sin^2(\Delta_{41}) = 1/2$ (replace rapid oscillation by average)

$$= 1 - 2 |U_{\mu4}|^2 (1 - |U_{\mu4}|^2) - 4 |U_{\mu3}|^2 (1 - (|U_{\mu3}|^2 + |U_{\mu4}|^2)) \sin^2 \Delta_{32}$$

$$P_{\mu\tau} = 2 |U_{\mu4}|^2 |U_{\tau4}|^2 -4 \sin \left[\Delta_{32}\right] \left(\cos \left[\Delta_{32}\right] \operatorname{Im} \left[U_{\tau3} U_{\mu3}^* \left(U_{\mu1} U_{\tau1}^* + U_{\mu2} U_{\tau2}^*\right)\right] + \operatorname{Re} \left[U_{\tau3} U_{\mu3}^* \left(U_{\mu1} U_{\tau1}^* + U_{\mu2} U_{\tau2}^*\right)\right] \right\}$$

$$\Delta_{ij} = \Delta m_{ij}^2 L/4I$$

Oscillation Channels

 $P_{\mu\mu}$

Matter Enhanced Sterile Search: Observed Events

	105									S	ta	rt						Ι	ce	Cu	be
	10°			2								I							1	- -	
			1		1						1	2	2	2	2	2		2	3		
			1			1		1	7		1	7	1	e	ŝ	4	4	2	2	4	9
			1		5	1		33	4			1	ŝ	-1	4	2	5	5	5	9	∞ -
			1	1	ŝ	2	4	°C	7	ъ	2	7	9	4	4	33	ŝ	9	4	11	10
	104		-	Ц	4	4	2	ũ	c,	4	2	4	c,	2	4	5	15	10	6	12	15
		7	ъ	ъ	-1	-1	5	IJ	11	4	4	5		9	13	4	14	×	20	26	30
		10	ю	4	ю	3	12	9	2	12	6	10	13	10	17	16	29	19	23	27	34
JeV		9	2	4	ъ	12	11	10	11	18	15	11	16	23	25	27	29	32	24	48	46
		14	7	10	18	15	16	17	14	21	20	29	24	19	34	29	43	40	50	59	. 59
\leq		22	20	21	19	21	12	31	31	32	45	28	39	40	51	59	59	l 54	1 71	85) 106
lN		1 27	3 25	2 32	28) 29) 37	3 43	3 47) 39	7 34	3 43	2 41	f 73	1 67	0 80	9 86	6 10:	0 11	5 96	2 13(
dr		1 3	0 45	9 52	57	1 40	2 40	80	9 48	39 8	0 87	1 8(52 0	2 94	1 91	0 10	6 12	0 13	8 15	7 16	.0 17
T		7 4	2 70	2 50	17 50)5 8	1 7	10 2	13 71	28 73	30 10	38 12	37 12	74 10	96 16	95 13	34 15	54 20	34 17	15 24)5 24
		6 6	25 7	23 7	35 11	52 10	47 9	76 11	82 14	95 12	93 16	00 16	20 16	43 17	47 19	92 19	94 23	18 25	77 26	14 31	19 3(
	10 ³	55 9	74 1:	1: 62	03 1:	73 1	10 1	26 1′	66 18	44 19	45 19	60 2(69 2:	99 2,	04 2/	81 29	79 29	42 3	03 3	86 4	45 4
		87 1	51 1	38 1	58 2	64 1	14 2	27 2	21 2	41 2	61 2	02 2	11 2	09 2	29 3	79 3	66 3	64 4	26 5	48 5	37 5
		260 1	294 2	332 2	355 2	393 2	100 3	123 3	151 3	144 3	163 3	520 4	525 4	546 4	590 4	319 4	359 5	2 602	318 6	399 7	955 6
		333	391 2	473 8	458	513 8	522	552 4	561 4	572 4	655 4	676	661	602	825	834 (893 (954 7	051 8	166 8	128
		445	550	560 2	635 4	704	683	743	744	298	846 (768 (884 (926	941 8	1060	1059	1139	1248	1353 1	1366 1
		577	692	767	858	854	887	937	1011	1009	1002	1102	1096	1106	1189	1251 1	1329 1	1409 1	1486 1	1638 1	1647
	—	1.0			—().8)	، 	—().6		1	—().4	-		—().2)		0.0
													\sim								

 $\cos(\theta_z^{reco})$

preliminary

Through

.0		-0.8 $-0.$							-0.6 -0.4								-0.2				
2197	2364	2317	2390	2454	2556	2688	2907	3005	3236	3509	3798	4210	4500	4731	5166	5350	5946	6051	5360		
1595	1594	1634	1721	1789	1800	1985	2064	2286	2365	2569	2787	3086	3189	3615	3607	4145	4289	4550	4017		
1048	1110	1148	1210	1226	1278	1361	1456	1543	1634	1732	1996	2091	2256	2404	2701	2952	3057	3398	3166		
706	816	167	828	903	206	952	1035	1057	1209	1290	1336	1513	1699	1864	2019	2201	2280	2490	2504		
477	494	558	590	624	631	684	684	777	878	944	1014	1096	1209	1396	1439	1660	1783	1997	1879		
360	386	377	376	438	484	486	552	564	618	671	740	814	916	1001	1133	1214	1389	1469	1382		
223	246	285	287	331	329	332	325	398	427	492	542	595	711	627	866	941	1020	1149	1205		
174	183	212	230	260	220	230	269	316	329	349	391	431	512	559	632	694	829	006	886		
108	133	145	118	169	156	189	212	213	247	297	285	322	378	398	497	554	612	650	649		
98	104	96	120	115	132	141	132	163	160	197	211	259	280	302	321	402	433	483	523		
69	68	74	75	107	79	82	93	95	109	136	166	183	189	214	265	261	336	375	370		
44	53	42	40	55	56	74	68	20	62	93	110	146	147	150	157	209	252	255	250		
26	25	33	38	38	26	43	47	46	58	59	80	75	94	66	105	139	165	203	195		
17	21	17	18	24	26	38	31	29	26	41	47	59	72	62	79	80	110	121	129		
10	22	18	20	14	16	17	28	16	27	30	42	43	37	51	49	64	89	87	95		
2	6	6	11	16	x	6	13	6	18	23	18	25	29	41	36	40	44	51	78		
ъ	4	ы	9	4	IJ	×	2	10	12	×	20	12	13	19	28	24	38	37	38		
2	4	ю	4	7	က	9	×	×	5	13	12	10	11	11	17	15	27	19	27		
	7	1	7	7	7	1	1	IJ	4	5	2	6	11	10	16	6	19	21	20		
	ŝ		7	က	4	7	4		3	4	က	5	Ŋ	×	9	9	10	15	×		
			1	7	1		7	1	e	2	9	9	1	9	ũ	9	9	7	6		
			1	1				7		2			9	4	5 C	3	4	4	4		

 $\cos(\theta_z^{reco})$

