22nd International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Procida (Italy), October 11-13, 2023

The ANTARES and KM3NeT neutrino telescopes: status and perspectives for neutrino physics and astrophysics

Maurizio Spurio (<u>maurizio.spurio@unibo.it</u>) Università di Bologna and INFN

ANTARES and KM3NeT Collaborations

The neutrino telescope world map 202*

The neutrino telescope world map 202*

Mediterranean Detectors

5

1

E

2500m

10

CI C

0

COLC.

COL

70 m

ANTARES 2006 - 2022

20

-

450 m

Interlink cables

30

007

00

Inction

Box

KM3NeT detectors: ARCA and ORCA

KM3NeT

Same technology for the two detectors

ORCA

- Depth ~2500 m
- One block of 115 Detection Units
- \bullet Average distanc between Detection Units ${\sim}20~\text{m}$
- Average vertical distance between DOMs \sim 9 m

ARCA

- Depth ~3500 m
- Two blocks of 115 Detection Units each
- Average distance between Detection Units ~90 m
- Vertical distance between DOMs ~36 m

KM3NeT Construction

https://www.youtube.com/watch?v=tR8jwgG6uzk

- TODAY: 28 Detector Units (DUs) deployed in ARCA
- TODAY: 18 DUs deployed in in KM3NeT/ORCA
- ANTARES online acceptance overcome (> ×3)
- Total KM3NeT cost: 320 M€ (>2/3 secured)

Flagship Experiment

Physics Studies

Physics Studies

v from core-collapse supernovae

- Signal Model: Neutrino Emission from Supernovae. H.-Th. Janka. arXiv:1702.08713
- Accretion phase: 0.5 s
- Signal in the detector: 90% due to CC $\overline{v_e}$ interaction
- 10 MeV electron release its energy in about 5 cm of water
- Coherent increase of the "light" in the detector.

ν from core-collapse supernovae: signal and bck

• 2070 DOMs in one detector building block

Number of activated OMs

- Each DOM is a detector
- 31 small PMTs in each DOM

MeV radioactivity: 1-2 PMTs in 20 ns

KM3NeT: EPJ. C (2021) 81:445

KM3Ne1

ν from core-collapse supernovae: signal and bck

- 2070 DOMs in one detector building block
- Each DOM is a detector
- 31 small PMTs in each DOM

MeV radioactivity: 1-2 PMTs in 20 ns 10 MeV electron: > 4 PMTs in 20 ns

KM3Ne1

ν from core-collapse supernovae: signal and bck

- 2070 DOMs in one detector building block
- Each DOM is a detector
- 31 small PMTs in each DOM

MeV radioactivity: 1-2 PMTs in 20 ns 10 MeV electron: > 4 PMTs in 20 ns Muons: > 4 PMTs in many DOMSs but within few μs

v from core-collapse supernovae: events

- SNe @ 10 kpc (11,27, 40 M_{sun})
- Number of «events» in a time window of 0.5 s in 2070 DUs due to signal and background
- Significant excess for #PMTs>6
- Multiplicity distribution can be used as proxy of the SN neutrino energy spectrum.

KM3NeT: EPJ. C (2021) 81:445

KM3NeT

M. Spurio: ANTARES and KM3NeT @NNN23

v from core-collapse supernovae: events

- SNe @ 10 kpc (11,27, 40 M_{sun})
- Number of «events» in a time window of 0.5 s in 2070 DUs due to signal and background
- Significant excess for #PMTs>6
- Multiplicity distribution can be used as proxy of the SN neutrino energy spectrum.

KM3NeT: EPJ. C (2021) 81:445

KM3NeT

v from core-collapse supernovae: sensitivity

- KM3NeT detection sensitivity as a function of the distance to the CCSN for the three progenitors considered.
- The error bars include the systematic uncertainties

KM3NeT: EPJ. C (2021) 81:445

KM3NeT supernovae alert (online pipeline)

• Alert system: 20 s latency time

KM3NeT

 Trigger threshold: adapt to background level 1 fake event/week

PoS(ICRC2023)1223

KM3NeT supernovae alert (online pipeline)

• Alert system: 20 s latency time

KM3NeT

- Trigger threshold: adapt to background level 1 fake event/week
- Buffer 10 min of data
- Timing of the SN detection for triangulation with other experiments.

Physics Studies

v-oscillation (v_{μ} - disappearance)

- A binned likelihood fit in 2D ($log_{10}(E_{reco}), cos\theta_{reco}$)
- Priors and fitted values obtained by minimization for all parameters of 3 flavor oscillations.
- No-oscillation hypothesis excluded at 4.6σ
- Data sample available on the ANTARES site

Parameter	Prior	Fit result
$\Delta m_{32}^2 \ [10^{-3} \mathrm{eV^2}]$	none	$2.0^{+0.4}_{-0.3}$
θ_{23} [°]	none	45^{+12}_{-11}
$n_{oldsymbol{ u}}$	none	$0.81^{+0.10}_{-0.09}$
$ u/\overline{ u} \ [\sigma] $	0.0 ± 1.0	$1.10^{+0.64}_{-0.56}$
$\Delta\gamma$	0.00 ± 0.05	-0.003 ± 0.036
N_{μ}	740 ± 120	414_{-24}^{+48}
θ_{13} [°]	8.41 ± 0.28	8.41 ± 0.28
$M_{A}[\sigma]$	0.0 ± 1.0	0.0 ± 1.0

Oscillation Studies KM3NeT/ORCA

Neutrino Mass Ordering: KM3NeT/ORCA goal

• Earth matter affects the oscillation pattern depending on NMO [] EPJ. C 82, 26 (2022)

KM3NeT

Physics Studies

Full ANTARES (4532.16 days) & ARCA6+8 (300 days)

DM Earth

Physics of the Dark Universe, 16 (2017) 41-48

DM Sun

☞ PoS(ICRC2023)1406

Phys.Lett. B759 2016 JCAP 05 (2016) 016 JCAP11 (2013) 032

DM Galactic Center

JCAP 06 (2022) 06, 028 (secluded DM) Phys. Lett. B 805 135439 (2020). Phys. Rev. D 102, 082002 (2020) Phys. Let. B 769 (2017) 249 JCAP 10 (2015) 068

PoS(ICRC2023)1375
 PoS(ICRC2023)1377
 PoS(ICRC2023)1443

Exotic

Magnetic monopoles: JHEAp, 34, 2022, 1-8; Nuclearites (SQM): JCAP01(2023)012

The 90% CL upper limits on the thermally-averaged WIMP annihilation cross section vs. WIMP mass for each of the five annihilation channels using the GC direction

Physics Studies

Diffuse v flux searches

Data sample 2007-2018 (3330 days) All-sky / All-flavor neutrino search

- Selection cuts optimized with Model Rejection Factor procedure (spectral index Γ = 2.5)
- Look for excess above a given energy threshold

Diffuse flux – Towards a confirmation of IC

Snowmass 2021: D arXiv:2203.08096

Preliminary KM3NeT results: DoS(ICRC2023)1195

Search for Diffuse Galactic Emission

• More robust analyses: background measured from OFF regions of same local acceptance

Comparison with IceCube «template» results

- ANTARES best fit from above the CR propagation models, even though its uncertainties are rather large
- ANTARES above the IceCube best fit
- IceCube results are a factor \sim 2 below the CR models for KRA-models, while above the π^0 model

This has triggered investigations

- V. Vecchiotti et al., arXiv.2306.16305
- A. Ambrosone et al. arXiv.2306.17285
- A. Neronov et al., arXiv.2307.07978
- LHAASO Coll., PoS(ICRC2023) 1091
- G. Schwefer et al. PoS(ICRC2023)1502
- G. Giacinti et al, *PoS* ICRC2023) 813

....

Search for Point Sources

\mathbf{v} in the direction of radio-bright blazars arXiv:2309.06874

- v-blazar directional correlation tested by a likelihood approach.
- The resulting post-trial p-value is 3.0% (2.2σ in the two-sided)
- A time-dependent analysis searching for temporal clustering of v's yields **18 sources** with a pre-trial significance above 3σ indicates a p = 1.4% (2.5 σ two-sided).
- An a posteriori investigation reveals a temporal coincidence of neutrino, radio, and γ -ray flares of **J0242+1101 blazar** at a p = 0.5% (2.9 σ two-sided) level.

34

curves

trom

the direction of the

Search for point sources: perspectives

PoS(ICRC2023)1018 & 1075

Better sensitivity (for equivalent exposure) and better sky coverage than IceCube

Search for point sources: perspectives

PoS(ICRC2023)1018 & 1075

Better sensitivity (for equivalent exposure) and better sky coverage than IceCube

2ND APPROACH:

38

KM3NeT taking up the torch online

→ Follow-up of O3 events & on-going followup of O4 events □ PoS(ICRC2023)1506 KM3NeT real-time platform active from November 2022

- On average ~4 s to reconstruct and classify ARCA events
- ~6 seconds to reconstruct and classify ORCA events

visibility of KM3NeT at the trigger time of the alert.

Sea and Earth Science

During operation on the ANTARES/ KM3NeT site, last summer Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean

iter dense water formation at

ER PLOS ONE 8 (7) 2013

Deep-sea bioluminescence bio the ocean surface 10 Ocean Dynamics, April 2

tency internal wave motions at the ANTARES site in t

J of Geophysical Research: Oceans, 122, 3, 2017 Reep sediment resuspension and thick nepheloid layer generation by open-ocean convection

Sci. Rep. 7 (2017) 45517 Sperm whale diel behaviour revealed by ANTARES, a deep-sea poutrino telescope

https://arxiv.org/abs/2107.08063
Studying Bioluminescence Flashes with the ANTARES Deep Sea
Neutrino Telescope

KM3NeT

- ANTARES: first undersea Cherenkov detector
 - Demonstration of the great potential of deep-sea Neutrino Telescopes
 - Excellent angular resolution, view of Southern sky, competitive sensitivities
 - Constraints on the origin of the IceCube signal
 - Hint of a Galactic neutrino diffuse emission
 - Last results and legacy program to be pursued in the coming year
- **KM3NeT**: phased approach to next-generation neutrino telescope by 2028
 - Deployment of detection units at a good pace.
 - Now: KM3NeT/ARCA 28 strings KM3NeT/ORCA 18 strings
 - KM3NeT/ORCA and ARCA combine a rich neutrino physics and astrophysics scientific scope, from MeV to PeV energies
 - Unique infrastructure for multidisciplinary program.

M. Spurio: ANTARES and KM3Net @NNN23

the.

v-oscillation studies: Sterile & NSI

IHEP (2019) 113IHEP (2022) 48

- (3+1) sterile neutrino models $\Delta m_{41}^2 > 0.5 \text{ eV}^2$
- Our results (90% CL) exclude regions of the parameter space not yet excluded by other experiments.
- Non-standard interactions signature in v oscillation patterns are detectable
- A log-likelihood ratio test of the dimensionless coefficients ε_{μτ} and ε_{ττ} – ε_{μμ} does not provide clear evidence of deviations from standard interactions.
- The non-NSI hypothesis is disfavored with a significance of 1.7σ (1.6σ) for the normal (inverted) mass ordering scenario.

-0.010

-2 AlogL

0.10

0.05

0.00

-0.05

-0.10

 $\epsilon_{\mu\mu}^{3}$

 ϵ_{π}

Multidisciplinary Observatories

TÉLÉSCOPI

Deep-Sea Research I 58 (2011) 875–884 Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean

PLoS ONE 8 (7) 2013

Deep-sea bioluminescence blooms after dense water formation at the ocean surface

Ocean Dynamics, April 2014, 64, 4, 507-517 *High-frequency internal wave motions at the ANTARES site in the deep Western Mediterranean*

J of Geophysical Research: Oceans, 122, 3, 2017 Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

Sci. Rep. 7 (2017) 45517 Sperm whale diel behaviour revealed by ANTARES, a deep-sea neutrino telescope

https://arxiv.org/abs/2107.08063
Studying Bioluminescence Flashes with the ANTARES Deep Sea
Neutrino Telescope

+ Citizen science

Search for Exotic Physics

Magnetic monopoles

Kasama, Yang and Goldhaber model Adapted reconstruction for slow moving particles

Nuclearites of strange quark matter Down going flux with Galactic velocities according to De Rújula & Glashow model

THE KM3NET/ARCA STATUS

1-2 sea campaigns per year. The last one in September 2023 recovered 2 DUs not working and deployed 9 DUs Detector commissioning on-going

THE KM3NET/ORCA STATUS

Current status 18 DUs deployed 16 DUs taking data

Many sea campaigns/year

Next campaigns

November 2023 sea campaign Replace the two not working DUs and add 4 DUs 22 DUs
December 2023 sea campaign + 2 DUs 24 DUs

RAB1

For the end of 2023 completion of node 1 👉 24 DUs

Detection Principle in a nutshell

- Tracks: median ang. res. can drop below 0.1° above 100 TeV, factor 2 energy estimate
- Showers : median angular resolution can reach 1° at 100 TeV, 10% energy resolution