Status and perspective of ICARUS at the Fermilab Short-Baseline Neutrino Program

Fermiab

Bruce Howard on behalf of the ICARUS Collaboration 11 October 2023 NNN2023 Procida, Italy

The Neutrino Landscape

- Nature of neutrinos & oscillations comprise key questions facing our community
- A lot of work in developing clearer picture of v oscillations but still questions, such as:
 - What precisely are the v mixing parameters, and: Normal or Inverted mass ordering? Do v violate CP symmetry? (long-baseline osc)
 - Are there more than the 3 known neutrino flavors? (<u>short-baseline</u> osc)
- Current gen of v long-baseline experiments (e.g. NOvA, T2K) *might* get significant result on mass ordering, but we need the **next-generation** detectors (this is NNN!) to make definitive measurements and to have significant CP violation discovery potential

More than 3 v?

- LSND, MiniBooNE anomalous excess of low E ve candidates at short baseline:
 - Cannot explain via osc among 3 standard flavors. An interpretation of this is oscillation of v_{μ} to v_{e} due to at least 1 sterile v state
- Hard to distinguish e, γ in MiniBooNE (background constraints important)
- More recently, Neutrino4 collaboration claimed hint of possible oscillatory signature (A. P. Serebrov et al Phys. Rev. D 104, 032003 (2021))

- searches
 - alternative solution

The LAr TPC detector

- Liquid Argon time-projection chamber: mechanism for enabling power tracking and calorimetry
- E-field drifts ionization to wires (~ms) to measure tracks/showers: wires w/ mm spacing yield fine tracking resolution
 - Strength proportional to energy deposition
 - Precision measurements, e-γ separation ability
- Scintillation much faster (ns-µs) and can provide (at minimum) triggering and background rejection
- LArTPCs are being used in the current-generation short-baseline studies, and will power the nextgeneration measurements at DUNE

ovide ection eration next-

R. Acciarri et al. arXiv:1503.01520

> "Traditional" photon detection in LAr TPC: PMT with TPB, ICARUS

_

The LAr TPC detector

- Liquid Argon time-projection chamber: mechanism for enabling power tracking and calorimetry
- E-field drifts ionization to wires (~ms) to measure tracks/showers: wires w/ mm spacing yield fine tracking resolution
 - Strength proportional to energy deposition
 - Precision measurements, $e-\gamma$ separation ability
- Scintillation much faster (ns-µs) and can provide (at minimum) triggering and background rejection
- LArTPCs are being used in the current-generation short-baseline studies, and will power the nextgeneration measurements at DUNE

- 2 TPCs per module w/ drift distance ~1.5 m

FNAL SBN Program

- 3 LAr TPC detectors along BNB beam
- MicroBooNE already took data and made measurements, **SBND** and **ICARUS** will operate simultaneously
- Allows oscillation measurement like long-baseline, 3-flavor studies
 - SBND=near det, ICARUS=far det
 - Main capability to study both v_{μ} disappearance & v_e appearance
 - Can also probe v_e disappearance (intrinsic component, or NuMI offaxis at ICARUS)
- Utilize LArTPC capability for tracking and particle ID and by virtue of being this sensitive detector, **powerful for BSM** searches

Preparation for next-gen

- SBN detectors will provide other crucial pieces for next-generation measurements with DUNE:
 - Gain experience with LAr TPC detectors and perform detector physics studies
 - Validate and improve neutrino-Ar interaction modeling before DUNE comes online
- Use of near detector confines overall rate (flux) systematics that would otherwise be large
 - Interaction related uncertainties still large, especially w/ expected increased statistics
- Reliance on generators/models predicting impact of different interaction-related effects (e.g. Near-Far rate differences and ability to resolve E_v)
 - More studies to inspect model disagreement & drive further development, especially w/ Ar

NuMI v Interactions in ICARUS

- ICARUS off-axis of NuMI, ~800m from target: 100s MeV to few GeV range. Due to kaons, also see peak at ~2 GeV
- Will use these neutrinos to perform neutrino interaction studies and cross-section measurements
 - Inclusive and exclusive cross-sections in various kinematic variables for muon (anti-)neutrinos and electron (anti-)neutrinos
 - Due to reasonably large v_e rate and flux constraints, we will also target v_e -to- v_μ cross-section ratio

NuMI v Interactions in ICARUS

- Aim study current models and aid advance of them before 5 DUNE turns on, but also to use commonalities to better share developments between experiments:
 - Unified GENIE base model between SBN detectors and DUNE: choice of model which is also re-weightable to other models
 - Use of **nusystematics** framework for interaction uncertainties initially developed by DUNE. We can feed back to this based on our findings.
 - **PPFX** used to constrain flux expectations, also used by MINERvA and NOvA (other experiments using NuMI)
 - Similar software environment and analysis frameworks enable further sharing of developments as we make measurements

Now to make all that happen...

- in 2020 and commissioning commenced
- CRT & overburden) were taking place
- these activities in June 2022:

Status & Perspective of ICARUS | B. Howard 12

- their performance
- Eur. Phys. Journal C 83, 467 (2023)

Status & Perspective of ICARUS | B. Howard 13

TPC Reco

- Use simulated samples of events, cosmic data, etc. to investigate the reco chain
 - Coordination w/ handscanning effort has provided very useful set of candidates to explore
 - Enabled also to check quality and ID areas needing improvement
- Vibrant groups working with Pandora & ML-based reco

Plots investigating a set of hand scanned DATA events for similar reconstruction quality checks (Note that some of the same signal and reco quality cuts not made here.)

ICARUS Detector Physics

- Calibration group not only making energy scale calibrations but also using data to study and better understand the physics of LAr TPC operation
- Few examples of recent progress:
 - Electron drift velocity in TPC depends on LAr microphysics (Τ, ρ, etc.): a study was performed
 - Pressure sensors used to give temperature
 - Angular dependence of recombination
 - Impacts charge seen at wires \rightarrow calorimetry
 - Recombination with (modified) box model: $dE/dx = (exp(\beta W_{ion}^*(dQ/dx))-\alpha) / \beta$
 - Results in agreement with ArgoNeuT study
 - Aids in proton calorimetry and particle ID
 - Also studies of transverse diffusion of e⁻ & more

Progress Toward Oscillation Analysis

- Actively working toward our first neutrino physics analyses using this data
- First analysis is targeting fully contained 1μ +1p sample for v_{μ} disappearance search with short baseline (BNB) beam) at ICARUS [~600 m]
 - Expected sensitivity of this early analysis would include the Neutrino-4 reported region of interest
 - Targeting relatively high purity: containment & matching with other subsystems (e.g. PMTs)
 - Contained 1µ+1p should prioritize cleaner events where energy reconstruction would be expected to perform better early on
 - Work ongoing to perform analyses with both Pandora-based & ML Reco-based selections
 - Matching of PMTs to cosmic ray taggers promising to filter exiting v from entering cosmics (using Δt)

Showing plot from Pandora reco-based selection

NuMI Cross-Sections

- Building up cross-section analysis to conduct model investigations detailed earlier
- First analysis targets 1(anti-)mu + Np + 0π
 - 1μ +Np+ 0π enhanced in quasi-elastic and 2p2h interactions, similar to osc should be somewhat "cleaner" as a first target but still provides interesting physics
 - Angle between the muon candidate and leading proton candidate populates the phase space somewhat broadly and would be expected to encode information about FSI
 - Reconstruction shows pretty good reco-true agreement
- Building up framework & workflow for end-to-end cross-section analysis, providing basis for future work
 - Selection is aimed to pick out 1µNp0pi events and reject backgrounds (e.g. pions)
 - Expect ~20k selected events at current selection & exposure

NuMI Cross-Sections

- Have also taken looks at some samples of data:

 - Working towards systematics studies needed to address and adjust detector uncertainties/reco
- Measuring backgrounds/sidebands for analysis (e.g. charged pions, neutral pions by inverting cuts)

• A selection targeting 1µNp+anything with some differences in cuts investigated w/ data samples to highlight cosmic rejection power and that selected beam events do peak with muon in forward direction • data/MC studies ongoing: shown here some relaxed cuts area normalized, fairly reasonable comparisons

NuMI Cross-Sections

- For the fit and cross-section extrapolation (also relevant to future cross-section analysis), we have decided to use the <u>GUNDAM fitting tool</u> developed by T2K which is now open source
 - Generic fitter for Upgraded Near Detector Analysis Methods
 - Implementing into our workflow and analysis, including FHC-FGD1-CC0π Example from T2K (<u>GitHub</u>) upgrades to framework for handling external fitters CCQE 100 Me/ RES 2p2h GUNDAM allows use of uncertainties based on DIS Counts / 600 out FV splines and covariance matrices, enables us to NC feed in systematic uncertainties in different ways COH 500 CC-V CC-ve, CC-⊽e • Flux systematics based on PPFX, cross-section 400 no truth External uncertainties closely tied to DUNE, Geant4 300 systematics based on DUNE/MicroBooNE 200 Detector systematics will follow 100 With similar computing environments & software,
- - believe similar workflow can be explored in DUNE 400 600 800 1000 1200 1400 1600 200

NuMI BSM Searches

- As powerful beam off-axis and using LAr TPC tracking & calorimetry, also searching for Beyond Standard Model processes especially using NuMI beam at ICARUS
 - Enhanced by pointing capability, e.g. pointing back to target or beam dump
 - Looking for light dark matter, Higgs portal scalars and other "long lived particles"
 - Look e.g. via searches to *l*, *l* pair
- Early analysis on Higgs portal scalar to $\mu, \bar{\mu}$ is well on the way and a number of others are progressing

Summary and Conclusions

- Neutrino oscillation provides a number of open questions that require investigation and unresolved anomalies from LSND and MiniBooNE could be signs of sterile neutrinos or other BSM physics:
 - ICARUS and the Fermilab Short Baseline Neutrino Program can probe anomalies
- DUNE will be a next-generation oscillation experiment using same detector technology:
 - ICARUS will provide important experiences with operating and conducting analyses with LArTPC detectors, and detector physics measurements will be directly useful for DUNE
 - Conducting neutrino cross-section and interaction measurements using neutrinos from the NuMI beam in a similar kinematic regime as DUNE: important to build better models for use in DUNE
- ICARUS underwent a period of commissioning and first operations as captured in recent paper: P. Abratenko et al, Eur. Phys. Journal C 83, 467 (2023)
- Actively pushing forward analyses with the data collected so far and looking forward to collecting more:
 - First results of some detector physics measurements highlighted
 - Remarked on progress towards oscillation measurements
 - Presented status and ongoing work to conduct $1\mu + Np + 0\pi$ v-Ar cross-section analysis

Backup

Status & Perspective of ICARUS | B. Howard Fermilab 23

ICARUS & History of LArTPC

- 1970s: ideas of TPC (D. Nygren, 1974), LAr as calorimeter (W. Willis & V. Radeka, 1974), & LAr TPC (C. Rubbia, 1977)
- 1985: ICARUS collaboration works to realize LAr TPC
- By mid 1990s: work and tests were being done with progressively larger prototypes
- 2001: technical commissioning run of T600 module conducted in Pavia, Italy
- 2010-2013: T600 module operated in nu beam from CERN: Gran Sasso (LNGS), Italy
- Mid 2010s: T600 module at CERN for upgrades
- 2017: ICARUS moved to FNAL
 - First large LAr TPC, still one of largest in operation
- Late 2020s: next-gen oscillation experiment DUNE will comprise 10s of kilotons of LArTPC detectors

ICARUS at LNGS

M. Antonello et al. Eur. Phys. Journal C **73**, 2345 (2013)

Preparation for next-gen

- In addition, the SBN program detectors will provide other **crucial** pieces in preparation for the nextgeneration measurements with DUNE:
 - Gain experience with LAr TPC detectors and perform **detector physics** studies
 - Validate and improve neutrino-Ar interaction **modeling** before DUNE comes online
- Use of near detector confines overall rate (flux) systematics that would otherwise be large
 - But does not make cross-section/interaction related uncertainties negligible: still important
- For one: flux is **different** at far detector (oscillation): degeneracy in differences seen at far detector between oscillatory effect or difference in v_µ vs ve cross-section relative to expectation

Impact of neutrino interactions/cross-sections on DUNE

- - So we estimate E_v based on the energy of all the products^{**}
- We rely on event generators giving us predictions of events interacting via different channels with varying kinematics
 - Some are being newly developed as well and showing promise
 - Theory community also incredibly important to refine, and provide new formulae to better characterize what we expect to see
- Measurements continue to show differences with model predictions
 - Need more measurements to check/find discrepancies in models and drive further development of them, especially with Ar

A few (of several) different event generators/models

Recall oscillation goes as (Distance / E_v), so E_v is critical to measure both as precise as possible and with knowledge of systematic uncertainties. But we don't see the neutrino, only products of its interactions

ArgoNeuT data R. Acciarri et al. Phys. Rev. D 99, 012002 (2019)

** Except our detectors are sensitive to <u>charged</u> particles. Neutral particles add difficulty in E_v measurement...

Impact of neutrino interactions/cross-sections on DUNE Also what we see in the detector can be a complicated "mess" of the neutrino

interaction on a nuclear target (Argon)

Status & Perspective of ICARUS | B. Howard 27

- in 3D, joining together across planes

- or shower-like (e.g. e, photon)

