Super-Kamiokande: Neutrino Results & Gadolinium Status

Thomas Wester, Boston University On behalf of the Super-Kamiokande Collaboration NNN2023, Procida

Outline

- Super-Kamiokande experiment
- Neutrino analyses
 - Atmospheric neutrino oscillations
 - Solar neutrinos
- SK-Gd
 - Gadolinium loading status
 - Diffuse Supernova Neutrino Background (DSNB) Search

Super-K nucleon decay results: See talk by S. Mine, poster by J. Seo

Super-K Experiment

(1 km mountain overburden)

Cherenkov rings for reconstructing particle type, direction, momentum

- Can't distinguish charge, no event-by-event v/\overline{v} separation
- + **Hit clusters** from decay electrons & neutron captures for statistical separation of v/\overline{v}

Super-K Timeline

SK I – SK V: Pure water phases **SK-Gd**: Gadolinium added in 2020

Atmospheric Neutrinos

Atmospheric Neutrinos

- Baselines ~ 10–10,000 km, Energies ~ 100 MeV–100 TeV
- Atmospheric flux contains v_{μ} , v_{e} , \overline{v}_{μ} , \overline{v}_{e}
- Earth matter effect present for upwardgoing neutrinos
- Probe of neutrino oscillations:
 - v_{μ} disappearance $\rightarrow sin^2 2\theta_{23}$, $|\Delta m^2_{32}|$
 - v_e appearance \rightarrow study δ_{CP} , θ_{23} octant, unknown neutrino mass ordering

Mass Ordering in Atmospheric Neutrinos

PER

PER **Mass Ordering in Atmospheric Neutrinos Normal** 0.9 0.8 0.9 0.8 $P(v_{\mu} \rightarrow v_{e})$ $\mathsf{P}(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ 8.0 0.6 0.8 0.6 0.7 0.7 0.4 0.4 0.6 0.2 0.2 0.6 $\cos\theta_z$ $\cos\theta_z$ 0.5 0 0 0.5 -0.2 0.4 -0.20.4 -0.4 0.3 -0.4 0.3 0.2 -0.6 0.2 -0.6 -0.8 -0.8 0.1 0.1 Upward-going, multi-GeV ۱U <u>_</u>0 10² 10² 10 ve appearance 10 E_v (GeV) E_v (GeV) Inverted 0.8 0.9 0.8 0.9 $P(v_{\mu} \rightarrow v_{e})$ $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ 8.0 0.8 0.6 0.6 0.7 0.7 0.4 0.4 0.2 0.6 0.2 0.6 $\cos\theta_z$ $\cos\theta_z$ 0.5 0.5 0 0 -0.2 0.4 -0.2 0.4 -0.4 0.3 -0.4 0.3 -0.6 0.2 -0.6 0.2 -0.8 0.1 -0.8 0.1 ۱O 10² 10² 10 10 1 E_v (GeV) E_v (GeV)

SK Atmospheric Neutrino Oscillation Analysis

Up-μ Outside vertex, upward-going

PC

FC

New since our previous publication:

• Expanded fiducial volume & additional pure water livetime: **+48% statistics**

A. Takenaka et al. (SK Collaboration) Phys. Rev. D **102**, 112011 (2020)

New since our previous publication:

- Expanded fiducial volume & additional pure water livetime: +48% statistics
- New boosted decision tree (BDT) for multi-ring event classification: Improved charged current/neutral current separation

New since our previous publication:

- Expanded fiducial volume & additional pure water livetime: +48% statistics
- New boosted decision tree (BDT) for multi-ring event classification: Improved charged current/neutral current separation
- Neutron tagging on hydrogen: Improves statistical separation of v_e/\overline{v}_e events, incorporated into event selection

New since our previous publication:

- Expanded fiducial volume & additional pure water livetime: +48% statistics
- New boosted decision tree (BDT) for multi-ring event classification: Improved charged current/neutral current separation
- Neutron tagging on hydrogen: Improves statistical separation of v_e/\overline{v}_e events, incorporated into event selection

Preliminary results were presented at NEUTRINO2022. Minor improvements, & checks of mass ordering result now ready

z (m)

SK I–V Atmospheric Oscillation Results

SK 2023 best fit: Normal ordering, $\delta_{CP} \sim -\pi/2$, $\Delta m^2_{32} \sim 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2\theta_{23} \sim 0.45$

Mass ordering: $\Delta \chi^2$ I.O. - N.O. ~ 5.7*

With reactor constraint: $\sin^2\theta_{13} = 0.0220 \pm 0.0007$

PER

*Mass Ordering Significance

- Generate toy data sets to obtain distribution of $\Delta\chi^2_{\text{NO-IO}}$
- SK data fit result has lower probability of occurring for a true inverted ordering than normal, but is also more extreme than normal ordering median (exceeds sensitivity)
- Compute CL_S statistic to correct probability of rejecting the inverted ordering given simultaneous agreement with normal ordering:

$$CL_S = \frac{p_{IO}}{1 - p_{NO}} \approx 0.077$$

Reject inverted ordering at the ~92% confidence level.

Constraints from T2K

SK + T2K Model

Reject inverted ordering at the ~98% confidence level

SK + T2K Model:

- External combination of SK & *published* T2K data by SK collaboration
- Tests effects of T2K constraints on Δm²₃₂, sin²θ₂₃, δ_{CP}, mass ordering on SK mass ordering result
- Previously done for SK 2018 oscillation analysis. Update for SK 2023 & T2K runs 1–9 was first shown at NEUTRINO 2022

Methods:

- Re-weight atmospheric MC to T2K's nominal flux and cross section parameters and approximate T2K's systematic uncertainty with ND constraint from published information
- Fit model prediction to published T2K bin counts as additional bins in atmospheric fit

Model based on on Phys. Rev. D 103, 112008 (2021)

2023/10/12

T2K Model Compared to T2K Runs 1–9 Analysis

- T2K Model based on published information is overall conservative compare to the T2K Runs 1–9 analysis
- Few-% difference in mass ordering preference and δ_{CP} best-fit & allowed ranges
- T2K run 10 data only recently published, and so is not included

T2K Runs 1–9 Model

Inverted

Comparison with Joint Fit

	SK I–V + constraints from T2K Runs 1-9 Model External analysis by SK, update T2K Model from 2018 SK analysis	T2K+SK IV Joint fit New formal joint effort between T2K & SK See talk by A. Eguchi		
Data products analyzed	Full atmospheric event info Published T2K bin counts	Full atmospheric event info Full T2K event info		
Uncertainty model	Full atmospheric, simplified beam Correlated cross section uncertainties	Full atmospheric, full beam Correlated cross section + detector uncertainties, near detector included in correlation matrix		
Atm. exposure/ Beam POT	6511.3 days (SK I–V) 14.9e20 v-mode, 16.3e20 ⊽-mode (T2K runs 1–9)	3244.4 days (SK IV) 19.7e20 v-mode , 16.3e20 ⊽-mode (T2K runs 1–10)		
Event selection	29 atmospheric samples, neutron tagging for SK IV–V 5 T2K single-ring samples	18 atmospheric samples, no neutron tagging 5 T2K single-ring samples		
Analysis	Profiled Δχ ²	Frequentist & Bayesian results, cross validation between multiple fitters		
More details in backup. Previous SK publication: Phys. Rev. D 97, 072001 (2018)				

Solar Neutrinos

Solar Neutrinos

Neutrinos produced in the sun through fusion processes

- ⁸B neutrinos recorded by SK with direction and energy information
- Oscillation topics:
 - Oscillation parameters θ_{12} , Δm^2_{21}
 - Day/night effect: Regeneration of solar neutrinos in earth matter
 - Solar upturn: MSW oscillations between ~1-5 MeV
- Other solar neutrino topics:
 - Flux modulation
 - Anti-neutrino search

SK Solar Neutrino Measurements

SK Solar Neutrino Oscillations

- SK data favors up-turn scenario below 5 MeV, but < 3.5 MeV data needed
- Recoil energy spectrum consistent with MSW oscillations

Solar Neutrino Global Fit Status

Progress Towards Upturn

- Need to lower current SK solar neutrino energy threshold to observe transition between matter and vacuum oscillations in solar neutrinos. Background-limited
- Dedicated hardware (WIT) searches un-triggered data for low-energy events & fits for fiducial vertex in real-time
- Some efficiency for solar neutrino identification down to 2.5 MeV recoil energy using BDT & WIT data

A. Yankelevich. (2022). Machine Learning Methods for Solar Neutrino Classification. (NEUTRINO2022 Poster)

SK-Gd: Super-K with Gadolinium

Introduction to SK-Gd

Why add gadolinium? Improved neutron tagging:

Neutron captures	н	0.01% Gd	0.03% Gd
Gamma energy	2.2 MeV	8 MeV,	multiple γ
Capture time	200 µs	120 µs	60 µs
Tagging efficiency	25%	50%	75%

SK-Gd proposal: Phys. Rev. Lett. 93, 171101 (2003)

Introduction to SK-Gd

Why add gadolinium? Improved neutron tagging:

Neutron captures	н	0.01% Gd	0.03% Gd
Gamma energy	2.2 MeV	8 MeV,	multiple γ
Capture time	200 µs	120 µs	60 µs
Tagging efficiency	25%	50%	75%

Knowing the number of neutrons...

- ... helps reject backgrounds for IBD events & proton decay searches
- ... improves statistical separation of neutrinos & anti-neutrinos
- ... provides estimate of hadronic activity

SK-Gd proposal: Phys. Rev. Lett. 93, 171101 (2003)

Gadolinium Loading Timeline

- Gd water system installed summer 2018, commissioned with pure water 2019-2020
- 0.01% loading completed summer 2020
- 0.03% loading completed summer 2022
- Gd data being analyzed now!

SK-Gd Neutron Capture Measurements

PER

SK-Gd DSNB analysis (See p

(See poster by M. Harada)

Diffuse Supernova Neutrino Background: Not-yet observed neutrino source expected from all past supernova

- ~7.5–30 MeV IBD signal window avoids reactor neutrinos & atmospheric background
- 0.01% SK-Gd data analyzed: Sensitivity is close to theoretical predictions, competitive with pure water phases

Summary

Atmospheric neutrinos

- Analyzed full pure water data set, prefer normal mass ordering, inverted $CL_s \sim 0.07$
- SK in agreement with T2K on mass ordering & δ_{CP} .

Solar neutrinos

- Global analysis including SK I-IV is compatible with KamLAND
- We are leveraging high solar v statistics for sub-leading oscillation effects & BSM searches

SK-Gd

• Neutron tagging is working, observing many more captures, first Gd data is analyzed, more soon!

SK Atmospheric Neutrino Oscillation Analysis

PER

Multi-Ring BDT Input Distributions

PER

Atmospheric Neutrino Event Selection

Atmospheric Neutrino Event Selection

χ^2 Calculation

Minimize χ^2 statistic for data versus MC given set of oscillation parameters & systematics:

	Data set	Samples	Bins	Systematic errors	Free parameters	Minimization
SK I-V, expanded FV	6511 live days (0.48 Mton·years)	29	930 (2D cosθ _z vs. momentum)	194	$\sin^2 heta_{23}, \Delta m^2_{32}, \delta_{CP},$ ordering	Grid scan

•

•

Super-K Neutrino Results & Gd Status, Thomas Wester, NNN2023

16ı

Results with θ_{13} Free

Prefer **sin²θ₁₃≈0.02**, consistent with

world-average reactor

measurements

Neutron Tagging & Mass Ordering

Comparison between event selection from previous SK atmospheric neutrino oscillation publication & event selection using neutron tagging for SK IV-V (57% of total livetime) fully contained singlering data

Oscillation parameters assumed: PDG 2022

Status of Atmospheric Mixing Parameters

MINOS: Phys. Rev. Lett. **125**, 131802 (2020) NOvA: 10.5281/zenodo.4142045 (2020) T2K: Eur. Phys. J. C **83**, 782 (2023) IceCube: Phys. Rev. D **108**, 012014 (2023)

Systematic Uncertainty Importance

- Mass ordering analysis: Look for electron neutrino appearance in upward-going neutrinos
- Downward-going neutrinos constrain many flux and cross section uncertainties
- Systematic uncertainties with asymmetric zenith angle dependence have the largest effect on mass ordering analysis
- SK analysis is still statistics-limited

Mass Ordering Sensitivity vs. Octant

- Octant is constrained by sub-GeV events & multi-GeV v_μ events with small mass ordering sensitivity
- Figure: Sensitivity for combinations of oscillation parameters allowed at 90% confidence level
- Upper-octant values of θ_{23} are closer to observed $\Delta \chi^2_{10-N0}$, wide range

90% Allowed Sensitivity Best-fit $\Delta \chi^2_{IO-NO}$ 6 δ_{CP} 5 Δχ²1.0.-N.O. 4 3 Best-fit $\sin^2\theta_{23}$ 2 0 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 $\sin^2\theta_{23}$

Reducing v_{τ} Contamination

- v_τ due to v_µ→v_τ oscillations appears in upward-going multi-GeV signal region for mass ordering
- No constraint from downward-going atmospheric neutrinos
- Developing neural network selection to divide Multi-GeV e-like events by v_τ probability to reduce impact of cross section uncertainty

2023/10/12

Constraints from T2K Model

Why combine SK and T2K data?

- Synergy between atmospheric neutrino matter effect & precision measurements of θ_{23} , Δm^{2}_{32} , δ_{CP} from beam neutrinos
- Same H₂O target: Treat cross section uncertainties as correlated. Potential for improvements beyond likelihood sum

T2K Modeling approach:

- Re-weight atmospheric MC to T2K's nominal flux and cross section parameters and approximates T2K's systematic uncertainty treatment from published information
- Fit model to published T2K bin counts as additional bins in atmospheric fit

Model based on on Phys. Rev. D **103**, 112008 (2021)

T2K Model

T2K Model re-weights atmospheric MC to the nominal cross section and flux models from the T2K runs 1–9 analysis

- CCQE model: RFG+RPA, M_AQE=1.13±0.08 GeV/c²
- Single pion model: Rein-Seghal, $C_{A^{5}}=0.98\pm0.06$, $I_{1/2}=1.31\pm0.26$, $M_{A^{Res}}=0.81\pm0.04$ GeV/ c^{2}
- SK models and uncertainties used for 2p2h, DIS, FSI processes

Flux and cross section central values and uncertainties are taken to be post-ND280 fit from Phys. Rev. D **103**, 112008 (2021)

More details: <u>SK 2018 PRD</u>, <u>T. Wester PhD thesis</u>

Other Solar Neutrino Results

Solar ⁸B v flux modulation < 5% @ 95% C.L.

Solar Neutrino Global Fit of θ₁₃

SK-Gd for Atmospheric Neutrinos

Improved $v-\overline{v}$ **separation** expected from higher neutron tagging efficiency with Gd captures. Many more captures per event **Improved neutrino reconstruction** expected using capture vertex. Neutrino energy correlates with neutron travel distance.

SK-Gd data, 0.01% Gd loading. Atmospheric neutrino events