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A large & precise  
homogeneous calorimeter 

JUNO is a huge liquid scintillator detector

People (to give you the scale)

Comparing to previous experiments

Target 
mass

Energy 
resolution (σ)

Daya Bay 20 ton 8%/√E

Borexino 300 ton 5%/√E

KamLAND 1000 ton 6%/√E

JUNO 20 000 ton 3%/√E

Heavier than CMS 

Larger than ATLAS
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JUNO is a huge liquid scintillator detector

Acrylic spherical 
vessel filled with 
liquid scintillator

Water pool

Top tracker and 
calibration house

Earth magnetic 
field compensation 

coils

Photomultiplier 
tubes

Acrylic supporting 
nodes
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JUNO is a huge liquid scintillator detector

4

Largest PMT coverage to date: 78% active surface

Unprecedented light level for a PMT-based detector: ~1600 pe/MeV (expected) 


(Daya Bay 160 pe/MeV - Borexino 500 pe/MeV - KamLAND 250 pe/MeV)
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JUNO is an observatory for rare events

Neutrino source Expected signal
Reactor 45 evts / day
Supernova burst 104 evts at 10 kpc
Diffuse supernova background 2-4 evts/ year
Sun 8B  (7Be) 16 (490) / day
Cosmic rays 100+ / year
Earth crust & mantle 400 / year

0.1 1 10 102 103 104 MeV

Energy Region
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Neutrino source Expected signal
Reactor 45 evts / day
Supernova burst 104 evts at 10 kpc
Diffuse supernova background 2-4 evts/ year
Sun 8B  (7Be) 16 (490) / day
Cosmic rays 100+ / year
Earth crust & mantle 400 / year
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Outline
Status: the detector

Light  
Emission

Light 

Detection

Charge  
Readout

Source  
Diagnostic

Prospects: physics goals
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20 kton liquid scintillator target mass 
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Organic liquid scintillator = interaction medium + detection medium

88% C + 12% H

C
re

di
ts

: A
. S

er
afi

ni

Solvent:

Linear Alkyl-Benzene


LAB 

10-40

10-41

10-42

10-43

10-44

10-45

10-46

10-47

Cr
os

s 
Se

ct
io

n 
[c

m
2 ]

10 20 30 40 50
(Anti-) Neutrino Energy [MeV]

CC on Hydrogen

CC on Carbon

ES on electron

ES on proton

T>
20

0 
ke

V 
on

 E
S 

fin
al

 s
ta

teν̄e + p → e+ + n

ν + p → ν + p

ν̄e +12 C → e+ +12 B

ν + e → ν + e

νe +12 C → e− +12 N



MARCO GRASSI JUNO AT NNN 2023

20 kton liquid scintillator target mass 
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Organic liquid scintillator = interaction medium + detection medium

Light emission

Fluor: 2.5 g/L PPO Wavelength shifter:  
3 mg/L bis-MSB

Light Emission

Solvent:

Linear Alkyl-Benzene


LAB 

N
IM

A 
96

7 
(2

02
0)

 1
63

86
0 



MARCO GRASSI JUNO AT NNN 2023

Ensuring purity before filling the detector
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5000 m3  
storage tank

13 m high

JH
EP

 1
1 

(2
02

1)
 1

02 Requirements 238U 232Th 226Ra 40K 210Pb(222Rn) 85Kr / 39Ar

Reactor physics 10-15 g/g 10-15 g/g 10-16 g/g 10-22 g/g

Solar physics 10-17 g/g 10-17 g/g 5⋅10-24 g/g 10-18 g/g 10-24 g/g 1μBq/m3

Radioactive contaminants yield background events
Optical impurities reduce transparency 

Purification 



MARCO GRASSI JUNO AT NNN 2023

Ensuring radio purity during filling
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During JUNO filling, batches of LS get monitored by 20 m3 ancillary detector

Measure 238U and 232Th
214Bi-214Po ( ~164 μs)τ
212Bi-212Po ( ~0.43 μs)τ

Few coincidences (events) per day

10-15 g/g in few days data taking

10-16 g/g in 2-3 weeks

20 m3
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Light 

Detection

Light  
Emission

Charge  
Readout

Source  
Diagnostic
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Energy resolution through photo-statistics
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20-inch (large) photomultiplier tubes (PMTs)

Dynode ⟨PDE⟩ = 28.5%
All ⟨PDE⟩ = 29.6%

Eu
r. 
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PMT Detection Efficiency
Micro-channel plate ⟨PDE⟩ = 30.1%

Quantity 5000 15000

Manufacturer Hamamatsu 
(JP) NNVT (CN)

Charge 
Collection Dynode Micro-channel plate

Transit Time 
Spread  σ 1.3 ns  σ 7.0 ns
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Energy resolution through photo-statistics
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20-inch (large) photomultiplier tubes (PMTs)

Dark Current Rate

Dynode ⟨DCR⟩ = 15.3 kHz
All ⟨DCR⟩ = 40.8 kHz

MCP ⟨DCR⟩ = 49.3 kHz
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(JP) NNVT (CN)

Charge 
Collection Dynode Micro-channel plate

Transit Time 
Spread  σ 1.3 ns  σ 7.0 ns

Dynode ⟨PDE⟩ = 28.5%
All ⟨PDE⟩ = 29.6%
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Micro-channel plate ⟨PDE⟩ = 30.1%
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Energy resolution & scale through calibration

14
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Understanding energy- & charge-related systematics
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25600 3-inch PMTs (dynode-based) by HZC

Additional 3% coverage → more light detected

Custom-designed shape - 25% Quantum eff.
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Understanding energy- & charge-related systematics
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Linear charge detection & reconstruction
Y.
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25600 3-inch PMTs (dynode-based) by HZC

• 20” PMT “reactor” dynamic range: [0,100] PEs

- Challenge: ensure sub-% energy systematics

Additional 3% coverage → more light detected

• Powerful synergy to ensure charge linearity

• 3” PMT “reactor” dynamic range: [0,2] PEs

- Well understood regime

Custom-designed shape - 25% Quantum eff.
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PMT charge readout (Electronics)
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DAQ

Clk/Trigger

UNDERWATER BOX

FPGA1Gs/s 14 bit 
digitizer

Frontend 
(amplifier) HV

Dry Electronics

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
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Electronic Noise Level [LPMT]

(Amplitude of SPE ~ 70 ADC)
Average 2.8 ADC

Preliminary 710 channels tested in April

1245 channels tested in June

Total

Electronic Noise Level [LPMT]
6862 boards produced and  
tested before installation


Ongoing test campaign  
during installation


Careful design & excellent grounding: 

noise level: 4% at 1 photoelectron

better than specs: 10% at 1 p.e.
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Understanding reactor neutrino source (TAO)

PR
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Many beta decays contribute to  yield at 
nuclear reactors

ν̄e

Reactor models being affected by  
larger-than-predicted uncertainties



MARCO GRASSI JUNO AT NNN 2023 21

2.8 ton detector at ~44 m from reactor


Energy resolution: < 2% at 1 MeV  (4500 PE/MeV)

Detector at -50°C (reduce SiPM dark rate)

Understanding reactor neutrino source (TAO)

Many beta decays contribute to  yield at 
nuclear reactors

ν̄e

Reactor models being affected by  
larger-than-predicted uncertainties

PR
C

 9
8,

 0
14

32
3 

(2
01

8)



MARCO GRASSI JUNO AT NNN 2023

TAO construction and expected performance

22
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Physics
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Rationale behind the JUNO design

24

 , but  not conclusively known  

Is  the heaviest (normal ordering) or the lightest (inverted ordering)?


 survival probability has this information embedded 
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Rationale behind the JUNO design
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 , but  not conclusively known  

Is  the heaviest (normal ordering) or the lightest (inverted ordering)?


 survival probability has this information embedded 

m2
2 > m2

1 sign(Δm2
32)

m2
3

ν̄eν1

ν2

ν3

ν3

0 10 20 30
L/E [km/MeV]

0.5

1

 S
ur

vi
va

l P
ro

ba
bi

lit
y

eν
1−10 1 10

L/E [km/MeV]

0.5

1

 S
ur

vi
va

l P
ro

ba
bi

lit
y

eνTwo orderings get out of phase

Reactor  energy: [0,8] MeVν̄e

Baseline = 52.5 km

20 kton to compensate 1/R2

~ 3% to disentangle themσ(E)
E

Log ScaleSurvival probability

Linear Scale

Normal Ordering
Inverted Ordering

25

m2



MARCO GRASSI JUNO AT NNN 2023 26

Neutrino oscillation parameters
Detect for the first time solar and atmospheric oscillation modes simultaneously 

P(ν̄e → ν̄e) = 1 − sin2 2θ12 c4
13 sin2 Δ21 − sin2 2θ13 (c2

12 sin2 Δ31 + s2
12 sin2 Δ32)

Antineutrino Energy (MeV)
2 4 6 8 10

0.0

1.0

 S
ur

viv
al 

Pr
ob

ab
ilit

y
ν̄ e

sin2 2θ12

sin2 2θ13

∝ Δm2
21

Cross section threshold
Combination of  e  Δm2

31 Δm2
32

Cr
ed

its
: V

. C
er

ro
ne



MARCO GRASSI JUNO AT NNN 2023 27

Neutrino oscillation parameters
Detect for the first time solar and atmospheric oscillation modes simultaneously 

P(ν̄e → ν̄e) = 1 − sin2 2θ12 c4
13 sin2 Δ21 − sin2 2θ13 (c2

12 sin2 Δ31 + s2
12 sin2 Δ32)
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JUNO will measure  and the two mass splittings with a  
sub-percent precision in a few years
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Ordering of the neutrino mass eigenstates

Major Updates w.r.t  JPG 43, 030401 (2016)
2 reactor cores won’t be built

Experimental hall up by 60 m:  
30% larger muon flux

PMT detection efficiency  
better than specs: 27% → 29%

Unoscillated reactor spectrum  
better constrained by TAO
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Ordering of the neutrino mass eigenstates

Major Updates w.r.t  JPG 43, 030401 (2016)
2 reactor cores won’t be built

Experimental hall up by 60 m:  
30% larger muon flux

PMT detection efficiency  
better than specs: 27% → 29%

Unoscillated reactor spectrum  
better constrained by TAO

1×105 2×105

Reactor  signal eventsν̄e

2 4 6 8 10
JUNO & TAO Exposure [years]

0 12 14 16

stat only

stat+sys

Normal ordering
Inverted ordering
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High-energy solar neutrinos from 8B

30
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High-energy solar neutrinos from 8B

31
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Borexino result Borexino  
result

Intermediate-energy solar neutrinos

32

Improve the understanding of  
neutrino-emitting solar processes

Radiopurity  
is the key

238U, 232Th

Borexino-like 10-19 g/g

Ideal 10-17 g/g

Baseline 10-16 g/g

Reactor 10-15 g/g

First CNO measurement without 
external constraints 
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7Be Rate

JCAP10(2023)022

JC
AP

10
(2

02
3)

02
2

pep Rate CNO Rate

Pr
ec

isi
on

 [%
]

Pr
ec

isi
on

 [%
]

Pr
ec

isi
on

 [%
]

Time [y] Time [y] Time [y]



MARCO GRASSI JUNO AT NNN 2023

Neutrinos from supernovae

33

Core-collapse SNe: JUNO will detect O(10MeV) postshock  of all flavorsν
Typical SN at 10 kpc: ~5000 IBD, ~300 eES, ~2000 pES, ~300 NC-12C

Core-collapse supernova ν

30 M⦿ at 10 kpc

Early warning (10-30 ms) up to 240-400 kpc (depending on mass) @ 50% prob

23
09

.0
71

09
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Neutrinos from supernovae

34

Core-collapse SNe: JUNO will detect O(10MeV) postshock  of all flavorsν
Typical SN at 10 kpc: ~5000 IBD, ~300 eES, ~2000 pES, ~300 NC-12C

Pre-Supernova ν:  
30 M⦿ at 0.2 kpc Integrated of 5 days

Core-collapse supernova ν

30 M⦿ at 10 kpc

(30 M⦿ at 0.2 kpc: old values for the red supergiant Betelgeuse values to ease comparison with other experiments)

Early warning (10-30 ms) up to 240-400 kpc (depending on mass) @ 50% prob
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Diffuse supernova neutrino background

35

Integrated neutrino signal from all the SN explosions in the Universe

Signal: Inverse Beta Decay (2~4/year) → Expected significance: 3σ in 3 years


If no observation: best limit + rule out large region parameter space

After pulse shape discrimination  
and triple coincidence cut

Before background 
suppression

JC
AP

10
(2

02
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03
3 

R<16m

Proxy for average core-collapse SN neutrino spectrum, cosmic star-formation rate, 
fraction of failed black-hole forming SNe 
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Proton Decay

36
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20 kton liquid scintillator: great sensitivity to p → v̄ K+

Signature: three-fold time coincidence ( )K+ → μ+ → e+

Time-of-flight-corrected Hit Time

K+

μ+

e+( ~12 ns)τ

( ~2.2 )τ μs

Expected sensitivity: 9.6 ⋅1033 years at 90% CL in 10 years data-taking (200 kton⋅yr)

Disentangling pile-up
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SuperKamiokande (2014) > 5.9 ⋅1033 year with 260 kton ⋅ yrs

Able to reject atmospheric  backgroundν
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Vast program in particle physics & astrophysics


Probing the neutrino oscillation mechanism  
at unprecedented precision


Ready to detect neutrinos from SN burst 


Competitive solar neutrino program 


Detector ready  
next year (2024)

Summary
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Backup
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JUNO is in Jiangmen

39
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Atmospheric neutrinos from cosmic rays

40
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Updated atmospheric neutrino analysis

41

• A lot of recent progress in 
reconstruction and event 
identification.


• Aiming to release an updated 
NMO sensitivity soon. 

Towards an Updated Sensitivity

Figure 7-9: The future optimistic (blue) and pessimistic (red) MH sensitivities as a function of
livetime for the true NH (left) and IH (right) hypotheses.

and NC events. Here we do not consider the statistical separation of neutrinos and antineutrinos,
and do not discriminate the FC and PC events. In contrast to the optimistic case, we take the
5%

√
Evis and 37.2◦/

√
Eν for the visible energy and the neutrino direction resolutions, respectively.

37.2◦/
√
Eν corresponds to the mean angle between the lepton and neutrino directions. In order to

calculate the MH sensitivity we weight a simulated dataset of 25 million events according to the
best fit parameters [67] of both NH and IH hierarchies. For the experimental event numbers Nij in
Eq. (7.17), we dice pseudo experiments for each hierarchy using a poisson distribution. This yields
the Gaussian distributed χ2 values. The MH sensitivity under the assumption that one hierarchy
is true is the distance between the expectation values µtrue and µfalse expressed in units of the
false hierarchy standard deviation σfalse. The estimated sensitivity Nσ = |µtrue − µfalse|/σfalse can
be seen in Fig. 7-9. After a 10 year measurement one would expect a 1.0σ combined sensitivity
from the point and track-like samples. The results are pessimistic compared to the optimistic case
which is mostly due to the assumed angular uncertainties. Additionally, the sensitivity of the point-
like sample is decreased by a high contamination of NC events and deep inelastic muon neutrino
interactions while the track-like sample has a higher uncertainty on energy resolution due to a high
number of PC events.

7.4.3 Atmospheric Mixing Angle θ23

For the atmospheric mixing angle θ23, the MINOS disappearance data indicates a non-maximal
θ23 [123]. However, the T2K disappearance data prefer a nearly maximal mixing θ23 = 45◦ [125].
It is an open question whether or not θ23 is maximal. If θ23 deviates from 45◦, one can get
both the lower octant (LO) θ23 < 45◦ and higher octant (HO) θ23 > 45◦ solutions, because the
νµ/ν̄µ survival probability is mainly sensitive to the sin2 2θ23 terms of Eq. (7.7) for the MINOS
and T2K experiments. When the MSW resonance happens, the sin4 θ23 term in Eq. (7.7) will be
enlarged due to sin2 2θm13 → 1. Then the sin4 θ23 term can help us to distinguish the θ23 octant
since sin4 θ23 is different for the θ23 and π/2 − θ23 solutions. In addition, we should consider the
oscillation probability P (νe → νµ) which is proportional to sin2 θ23 as shown in Eq. (7.6). It is
worthwhile to stress that the octant sensitivity from antineutrinos (neutrinos) is largely suppressed
by sin2 2θm13 → sin2 2θ13 when we take the NH (IH) hypothesis as the true mass hierarchy. Therefore

123

Yellow book “optimistic” sensitivity

Yellow Book
“Optimistic case”

Recent 
Improvements

Directionality
!"# =1˚ !"$ =10˚

 !"$ <10˚ (Eν>3GeV)

Energy Visible energy Neurino energy for FC 
events

e-like
Event 

Selection
Evis > 1GeV,  

Yvis=Eh/Evis  < 0.5
ML-based selection 

allowing for more stats 

Classification Simple classification with 
Michel e, Yvis cuts

 vs   :  
60%~80% eff.

Sensitivity 1.8 ! in 10 years To be updated

ν̄ν

17

Neutrino physics with JUNO  
J. Phys. G 43, 030401 (2016) 

Credits: H. Duyang at NuFact 23 FC = Fully contained
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Antineutrino Yield at Nuclear Reactors

42

PRL123, 111801 (2019)

CPC 41, 013002, 2017

PRL 118, 251801 (2017)

Four isotopes are responsible for most  
of the  fluxv̄e

Any feature in  energy spectrum needs to 
be properly taken into account

v̄e

Issues in the overall flux are less important
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32

4
L
E

+ cos2 θ12 sin2 Δm2
31

4
L
E ) −sin2 2θ12 cos4 θ13 sin2 Δm2

21

4
L
E

Δm2
31Δm2

32 sin2 2θ12−sin2 2θ13

Δm2
21
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Antineutrino Detection and Selection

Credits: M. Gonchar
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JUNO
Beam Exp

Correct Ordering
Wrong Ordering

Δχ2

|Δm2
32 |

Synergy in Determining the Mass Ordering

45

v̄μ → v̄e

v̄e → v̄e

vμ → ve

Disappearance

Appearance

Reactor

Beam

Both sensitive to atmospheric 
mass splitting

Δm2
32

Values are expected to agree only when correct ordering is assumed

Combined analysis expected to yield significance > 4σ
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Radiogenic Backgrounds 
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Radiopurity

Material selection  
& screening 

Passive water buffer

Cleaning & 

purification

In-situ monitoring

Reduce count rate of single energy depositions (bkg to solar analysis) and 

“accidental” coincidences (bkg to inverse beta decay detection)

2104.02565 
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Cosmogenic Background 
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Credits: Jilei Xu

Reactor  detected via inverse beta decayν̄e final state: e+ + n

8He and 9Li: unstable isotopes 

produced by  spallation on 12C 

and decaying -
μ

β n

Untagged  yield irreducible 
background

μ

Expected  rate: 4 Hz

Mean  energy: 207 GeV

μ
μ

New veto strategy Tagging : 91.6%ε Residual 8He 9Li event rate: 0.8/day
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Calibration Hardware
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Addressing The Reactor Spectral Uncertainties: TAO
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PRC 98, 014323 (2018)
Many beta decays contribute to  yield at 
nuclear reactors

ν̄e

Wide consensus on models being affected 
by larger-than-predicted uncertainties

Reactor spectrum distortion (a.k.a. “bump”) 
summation vs conversion

JUNO relies on good knowledge of the 
unoscillated spectrum

Taishan Antineutrino Observatory (TAO)

Ancillary detector to study unoscillated 
spectrum with resolution better than JUNO
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Supernova interactions
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All interaction channels (excluding CEνNS)

No trigger threshold assumed


