

JUNO Status and Prospects Marco Grassi (U. Padova & INFN)

JUNO is a huge liquid scintillator detector

JUNO is a huge liquid scintillator detector

JUNO is a huge liquid scintillator detector

Largest PMT coverage to date: 78% active surface Unprecedented light level for a PMT-based detector: ~1600 pe/MeV (expected) (Daya Bay 160 pe/MeV - Borexino 500 pe/MeV - KamLAND 250 pe/MeV)

Neutrino source	Expected signal			Ene	rgy Re	gion		
Reactor	45 evts / day							
Supernova burst	10 ⁴ evts at 10 kpc							
Diffuse supernova background	2-4 evts/ year							
Sun ⁸ B (⁷ Be)	16 (490) / day							
Cosmic rays	100+ / year							
Earth crust & mantle	400 / year							
		0.1	1	10	10 ²	10 ³	104	MeV

Outline

Status: the detector

Prospects: physics goals

Neutrino cource	Expected signal			Ener	gy Re	gion		
Reactor	45 evts / day							
Supernova burst	10 ⁴ evts at 10 kpc							
Diffuse supernova background	2-4 evts/ year							
Sun ⁸ B (⁷ Be)	16 (490) / day							
Cosmic rays	100+ / year							
Earth crust & mantle	400 / year							
		0.1	1	10	10 ²	10 ³	104	MeV

MARCO GRASSI

20 kton liquid scintillator target mass

20 kton liquid scintillator target mass

Organic liquid scintillator = interaction medium + detection medium

Solvent: Linear Alkyl-Benzene LAB Fluor: 2.5 g/L PPO

Wavelength shifter: 3 mg/L bis-MSB

Ensuring purity before filling the detector

Optical impurities reduce transparency — Purit Radioactive contaminants yield background events —

1) 102	Requirements	238 U	²³² Th	²²⁶ Ra	40 K	²¹⁰ Pb(²²² Rn)	⁸⁵ Kr / ³⁹ Ar
11 (202	Reactor physics	10 ⁻¹⁵ g/g	10 ⁻¹⁵ g/g		10 ⁻¹⁶ g/g	10 ⁻²² g/g	
JHEP	Solar physics	10 ⁻¹⁷ g/g	10 ⁻¹⁷ g/g	5 · 10 ⁻²⁴ g/g	10 ⁻¹⁸ g/g	10 ⁻²⁴ g/g	1µBq/m³

MARCO GRASSI

Ensuring radio purity during filling

During JUNO filling, batches of LS get monitored by 20 m³ ancillary detector

Measure ²³⁸U and ²³²Th

- ²¹⁴Bi-²¹⁴Po (τ~164 μs)
- 212Bi-212Po (τ~0.43 μs)

Few coincidences (events) per day 10⁻¹⁵ g/g in few days data taking 10⁻¹⁶ g/g in 2-3 weeks

Light Emission

Light Detection

Charge Readout

Source Diagnostic

Energy resolution through photo-statistics

20-inch (large) photomultiplier tubes (PMTs)

Quantity	5000	15000
Manufacturer	Hamamatsu (JP)	NNVT (CN)
Charge Collection	Dynode	Micro-channel plate
Transit Time Spread	σ 1.3 ns	σ 7.0 ns

Energy resolution through photo-statistics

<image>

Quantity	5000	15000
Manufacturer	Hamamatsu (JP)	NNVT (CN)
Charge Collection	Dynode	Micro-channel plate
Transit Time Spread	σ 1.3 ns	σ 7.0 ns

20-inch (large) photomultiplier tubes (PMTs)

MARCO GRASSI

Energy resolution & scale through calibration

MARCO GRASSI

Understanding energy- & charge-related systematics

25600 3-inch PMTs (dynode-based) by HZC

Custom-designed shape - 25% Quantum eff.

Additional 3% coverage \rightarrow more light detected

Understanding energy- & charge-related systematics

25600 3-inch PMTs (dynode-based) by HZC

Custom-designed shape - 25% Quantum eff.

Additional 3% coverage \rightarrow more light detected

- 20" PMT "reactor" dynamic range: [0,100] PEs
 - Challenge: ensure sub-% energy systematics
- 3" PMT "reactor" dynamic range: [0,2] PEs
 - Well understood regime
- Powerful synergy to ensure charge linearity

Light Emission

Light Detection

Charge Readout

Source Diagnostic

PMT charge readout (Electronics)

160
Preliminary
140
140
1245 channels tested in April
1245 channels tested in June
120
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100<

2.8

3.2

3

3.4

2.6

Electronic Noise Level [LPMT]

6862 boards produced and tested before installation

Ongoing test campaign during installation

Careful design & excellent grounding: noise level: 4% at 1 photoelectron better than specs: 10% at 1 p.e.

40

20

0<u>`</u>

2.2

2.4

Number of channels

3.8

Noise level [ADC]

3.6

Light Detection

Charge Readout

· ·

Source Diagnostic

Understanding reactor neutrino source (TAO)

Many beta decays contribute to $\bar{\nu}_e$ yield at nuclear reactors

Reactor models being affected by larger-than-predicted uncertainties

Understanding reactor neutrino source (TAO)

Many beta decays contribute to $\bar{\nu}_e$ yield at nuclear reactors

Reactor models being affected by larger-than-predicted uncertainties

2.8 ton detector at ~44 m from reactor

Energy resolution: < 2% at 1 MeV (4500 PE/MeV)

Detector at -50°C (reduce SiPM dark rate)

TAO construction and expected performance

Physics

Rationale behind the JUNO design

 $m_2^2 > m_1^2$, but $\mathrm{sign}(\Delta m_{32}^2)$ not conclusively known

Is m_3^2 the heaviest (normal ordering) or the lightest (inverted ordering)?

 $\bar{\nu}_e$ survival probability has this information embedded

 m^2

 ν_{γ}

 ν_{z}

Rationale behind the JUNO design m^2 $m_2^2 > m_1^2$, but sign (Δm_{32}^2) not conclusively known Is m_3^2 the heaviest (normal ordering) or the lightest (inverted ordering)? $\bar{\nu}_{\rho}$ survival probability has this information embedded Log Scale Survival probability ⊽_e Survival Probability ν_3 0.5 Normal Ordering Two orderings get out of phase **Inverted Ordering** 10⁻¹ L/E [km/MeV] $\frac{\sigma(E)}{E}$ ~ 3% to disentangle them Survival Probability Reactor $\bar{\nu}_e$ energy: [0,8] MeV 0.5 \rightarrow Baseline = 52.5 km 010000000 Linear Scale 10 20 \rightarrow 20 kton to compensate 1/R² 0 30 L/E [km/MeV]

Neutrino oscillation parameters

Detect for the first time solar and atmospheric oscillation modes simultaneously

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \left(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32}\right)$$

Neutrino oscillation parameters

Detect for the first time solar and atmospheric oscillation modes simultaneously

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \left(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32}\right)$$

JUNO will measure $\sin^2 \theta_{12}$ and the two mass splittings with a sub-percent precision in a few years

Ordering of the neutrino mass eigenstates

Major Updates w.r.t JPG 43, 030401 (2016)

2 reactor cores won't be built

Experimental hall up by 60 m: 30% larger muon flux

PMT detection efficiency better than specs: 27% → 29%

Ordering of the neutrino mass eigenstates

JUNO AT NNN 2023

MARCO GRASSI

29

High-energy solar neutrinos from ⁸B

Detection: ν_e elastic scattering off e^-

Main backgrounds:

LS intrinsic radioactivity (10⁻¹⁷g/g) Fiducial volume & 2 MeV threshold

Decay of cosmogenic isotopes

Muon tagging

Test of the transition from vacuum to matter-dominated ν_e survival probability

30

High-energy solar neutrinos from ⁸B

Detection: ν_e elastic scattering off e^-

Main backgrounds:

LS intrinsic radioactivity (10⁻¹⁷g/g) \bigtriangledown Fiducial volume & 2 MeV threshold

Decay of cosmogenic isotopes \bigtriangledown Muon tagging

 $\begin{array}{ll} {\rm Simultaneous\ determination\ of}\\ \sin^2\theta_{12} & \Delta m_{12}^2\\ {\rm limited\ by\ SNO\ NC} & {\rm limited\ by\ D/N\ \&\ upturn\ } \end{array}$

Intermediate-energy solar neutrinos

MARCO GRASSI

JUNO AT NNN 2023

Neutrinos from supernovae

Core-collapse SNe: JUNO will detect O(10MeV) postshock ν of all flavors Typical SN at 10 kpc: ~5000 IBD, ~300 eES, ~2000 pES, ~300 NC-¹²C

Early warning (10-30 ms) up to 240-400 kpc (depending on mass) @ 50% prob

Neutrinos from supernovae

Core-collapse SNe: JUNO will detect O(10MeV) postshock ν of all flavors Typical SN at 10 kpc: ~5000 IBD, ~300 eES, ~2000 pES, ~300 NC-¹²C

Early warning (10-30 ms) up to 240-400 kpc (depending on mass) @ 50% prob

(30 M_☉ at 0.2 kpc: old values for the red supergiant Betelgeuse values to ease comparison with other experiments)

Diffuse supernova neutrino background

Integrated neutrino signal from all the SN explosions in the Universe Signal: Inverse Beta Decay (2~4/year) → Expected significance: 3σ in 3 years If no observation: best limit + rule out large region parameter space

Proxy for average core-collapse SN neutrino spectrum, cosmic star-formation rate, fraction of failed black-hole forming SNe

Proton Decay

20 kton liquid scintillator: great sensitivity to $p \rightarrow \bar{v} K^+$

Signature: three-fold time coincidence $(K^+ \rightarrow \mu^+ \rightarrow e^+)$

Able to reject atmospheric u background

Expected sensitivity: 9.6 · 10³³ years at 90% CL in 10 years data-taking (200 kton·yr)

SuperKamiokande (2014) > 5.9 \cdot 10³³ year with 260 kton \cdot yrs

Summary

Vast program in particle physics & astrophysics

Probing the neutrino oscillation mechanism at unprecedented precision

Ready to detect neutrinos from SN burst

Competitive solar neutrino program

Detector ready next year (2024)

Backup

JUNO is in Jiangmen

Cores	YJ-1	YJ-2	YJ-3	YJ-4	YJ-5	YJ-6	TS-1	TS-2	DYB	HZ
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline(km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

Atmospheric neutrinos from cosmic rays

Based on full simulation and reconstruction chains

 v_e vs v_μ discrimination thanks to hit time pattern

Complementary measurement of the Neutrino Mass Ordering (~1 σ in 10 years)

Updated atmospheric neutrino analysis

				30	Yellow book "optimistic" sensitivity
	Yellow Book "Optimistic case"	Recent Improvements		2.5	Electron neutrinos Point-like Muon neutrinos Track-like — Electron+Muon — Point+Track
Directionality	$\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$	σ _{θν} <10° (E _ν >3GeV)	Sensitivity (σ)	2.0 -	Normal Hierarchy
Energy	Visible energy	Neurino energy for FC events		0.5	4 6 8 10 12 14 16 18 20
e-like Event Selection	$E_{vis} > 1 GeV,$ $Y_{vis}=E_h/E_{vis} < 0.5$	ML-based selection allowing for more stats			Livetime (year)
Classification	Simple classification with Michel e, Y _{vis} cuts	ν vs <i>ī</i> : 60%~80% eff.		• A re ic	lot of recent progress in econstruction and event dentification.
Sensitivity	1.8 σ in 10 years	To be updated		N	IMO sensitivity soon.
Neu J. P	trino physics with JUNO hys. G 43, 030401 (2016)				

FC = Fully contained

Credits: H. Duyang at NuFact 23

Antineutrino Yield at Nuclear Reactors

Four isotopes are responsible for most of the \bar{v}_e flux

Any feature in \bar{v}_e energy spectrum needs to be properly taken into account

Issues in the overall flux are less important

 $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$, $\bar{\nu}_\tau$ undetectable via charged current: not enough energy to yield μ or τ Detect surviving $\bar{\nu}_e$

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \left(\sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2}{4} \frac{L}{E} + \cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2}{4} \frac{L}{E} \right) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2}{4} \frac{L}{E}$$

Two mixing parameters

Three mass splittings

Baseline choice allows to enhance one oscillation regime

JUNO will be the first to see both of them simultaneously

No dependence on δ_{CP} and θ_{23}

Antineutrino Detection and Selection

Selection Criterion	Efficiency (%)	IBD Rate (day^{-1})	Background	Rate (day^{-1})
All IBDs	100.0	57.4	Geoneutrinos	1.2
Fiducial Volume	91.5	52.5	World reactors	1.0
IBD Selection	98.1	51.5	Accidentals	0.8
Energy Range	99.8	-	$^{9}\mathrm{Li}/^{8}\mathrm{He}$	0.8
Time Correlation (ΔT_{p-d})	99.0	-	Atmospheric ν 's	0.16
Spatial Correlation (ΔR_{p-d})	99.2	-	Fast neutrons	0.1
Muon Veto (Temporal⊕Spatial)	91.6	47.1	$^{13}C(\alpha,n)^{16}O$	0.05
Combined Selection	82.2	47.1		

Synergy in Determining the Mass Ordering

Combined analysis expected to yield significance > 4σ

Radiogenic Backgrounds

Matorial		Targe	Singles in ROI					
material	wass	²³⁸ U	²³² Th	⁴⁰ K	$^{210}Pb/^{222}Rn$	⁶⁰ Co	ALL	FV
	[t]	[ppb]	[ppb]	[ppb]		[mBq/kg]	[Hz]	[Hz]
\mathbf{LS}	20 k	10^{-6}	10^{-6}	10^{-7}	$10^{-13} \mathrm{\ ppb}$		2.5	2.2
Acrylic	610	10^{-3}	10^{-3}	10^{-3}			8.4	0.4
SS truss and nodes	1 k	0.2	0.6	0.02		1.5	15.8	1.1
dynode-LPMT glass	33.5	400	400	40				
MCP-LPMT glass	100.5	200	120	4			26.2	2.8
dynode-SPMT glass	2.6	400	400	200				
Water	35 k				10 mBq/m^3		1.0	0.06
Other							5	0.6
			Sum				59	7.2

2104.02565

Reduce count rate of single energy depositions (bkg to solar analysis) and "accidental" coincidences (bkg to inverse beta decay detection)

Cosmogenic Background

Reactor $\bar{\nu}_{\rho}$ detected via inverse beta decay \longrightarrow

⁸He and ⁹Li: unstable isotopes produced by μ spallation on ¹²C and decaying β -*n*

Untagged μ yield irreducible background

Expected μ rate: 4 Hz Mean μ energy: 207 GeV

New veto strategy \rightarrow Tagging ε : 91.6% \rightarrow Residual ⁸He ⁹Li event rate: 0.8/day

Calibration Hardware

Addressing The Reactor Spectral Uncertainties: TAO

Many beta decays contribute to $\bar{\nu}_e$ yield at nuclear reactors

Wide consensus on models being affected by larger-than-predicted uncertainties

Reactor spectrum distortion (a.k.a. "bump") summation vs conversion

JUNO relies on good knowledge of the unoscillated spectrum

Taishan Antineutrino Observatory (TAO)

Ancillary detector to study unoscillated spectrum with resolution better than JUNO

Supernova interactions

All interaction channels (excluding CEvNS) No trigger threshold assumed

