

Status of the Hyper-Kamiokande Experiment

Katsuki Hiraide (ICRR, The University of Tokyo) on behalf of the Hyper-Kamiokande Collaboration

The 22nd international workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN23) Oct 11 - 13, 2023 @ Procida, Italy

Hyper-Kamiokande Project

- The Hyper-Kamiokande project includes a far detector, a neutrino beam, and a neutrino near detector complex
 - Construct the Hyper-Kamiokande detector at Kamioka
 - Upgrade the J-PARC neutrino beam
 - Construct the Intermediate Water Cherenkov Detector (IWCD) at Tokai

Three Generations of Water Cherenkov Detector in Kamioka

3 kt mass

Hyper-Kamiokande

190 kt fiducial mass

Super-Kamiokande

Kamiokande <mark>22.5 kt fiducia</mark>l mass

• Kamiokande (1983 - 1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
- All mixing angles and $\Delta m^2 s$ **Discovery of neutrino oscillations**

<u>Hyper-Kamiokande (2027 -)</u>

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics

Explore new physics

Target sensitivity

Physics category	Parameters	Sensitivity
LBL	δ precision	7°-20°
(1.3MW×10years)	CPV coverage (3/5σ)	76%/58%
	$sin^2\theta_{23}$ error (for 0.5)	±0.017
ATM+LBL(10 years)	MO determination	>3.80
	Octant determination (3σ)	θ₂₃-45° >2°
Proton Decay (20 years)	τ for e+п ⁰ (3σ)	1×10 ³⁵ years
	τ for vΚ (3σ)	3×10 ³⁴ years
Solar (10 years)	Day/Night (from 0/from KL)	8σ/4σ
	Upturn	> 3σ
Supernova	Burst (10kpc)	54k-90k
	Relic	70v's / 10 years

Long-baseline program with the J-PARC neutrino beam

Experimental setup

- 2.5° off-axis v_{μ} and \bar{v}_{μ} beam peaked at 0.6 GeV (oscillation maximum at 295km)
 - Major interaction is QE: E_v determined from (p, θ) of charged lepton
- Measures CP violation in neutrinos by comparing $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

• A few % statistical uncertainties after 10 years operation with >1000 v_e and \bar{v}_e signals

CP violation sensitivity

• Sensitivity CP violation with 1:3 ν : $\bar{\nu}$ beam

- With optimistic systematics and known mass ordering (MO): 2-3 years for 5σ sensitivity to exclude CP conservation for true $\delta CP = -\pi/2$.
- After 10 years of operation, 60% of δCP values excluded at > 5 σ

Nucleon decay search

- Nucleon decay is evidence of Beyond Standard Model (BSM) and Grand Unified Theories (GUT)
- Examples of proton decay sensitivity in two modes:

[HK] arXiv:1805 04163[DUNE] arXiv:2002.03005[JUNO] arXiv:1508.07166

Neutrino astrophysics

- Observation of a few~10MeV neutrinos with time, energy and direction information
 - Unique role in multi-messenger observation
- Solar neutrinos: up-turn at vacuum-MSW transition, Day/Night asymmetry, hep neutrino observation
- Supernova burst neutrinos: explosion mechanism, BH/NS formation, alert with ~1° pointing
- Supernova Relic Neutrinos (SRN): stellar collapse, nucleosynthesis and history of the universe

Phys. J. A52, 87 (2016)

Hyper-Kamiokande Collaboration

- ~600 members located in 102 institutes from 22 countries
 - 25% Japanese / 75% non-Japanese
- Recently approved as a recognized experiment (RE45) at CERN
- March 2023: our very 1st Collaboration meeting in person after COVID!

Hyper-K construction schedule

- The Hyper-K construction started in 2020 and will start operation in 2027.
- We are in the middle of the civil construction and starting to produce detector components.

Hyper-K caverns excavation

- Access tunnel excavation completed.
- Approach & circular tunnel excavation completed.
- Main cavern excavation has started ! → On-time !

Access tunnel excavation

2022.2.25

Center of the future Hyper-K Main Cavern's Dome reached in June 2022

Hyper-K main cavern excavation

2nd - 4th rings

First ring

Cavern dome constructed in consecutive rings

5th - 6th rings

Hyper-K main cavern excavation

- <u>October 3, 2023:</u> Excavation of the dome section completed.
 - 69m diameter,
 21m height
 - One of the largest human-made underground space
- Now, the excavation of the barrel section is ongoing.

Hyper-K detector configuration

- Inner Detector (ID)
 - 64.8m diameter, 65.8m height
 - 50cm PMTs will be installed
 - Multi-PMT (mPMT) modules will be integrated as hybrid configuration

• Outer Detector (OD)

- 1m (barrel) or 2m (top/bottom) thick
- 3-inch PMT + WLS plate
- Walls are covered with high-reflectivity Tyvek sheets
- Under-water electronics
 - Mitigate disadvantage of long cables

Hyper-K 50cm PMT performance

Number of Hyper-K PMTs

20

10

1

TTS [σ]

2.5

1.5±0.07 ns

1.5

BL PMT

2

3.0±0.2

ns

SK PMT

3.5

3

Transit Time Spread [nsec]

Box&Line dynode

 ★2 better pressure tolerance
 → enable deeper tank design, project cost reduction

All PMTs will be tested >0.85MPa

Low dark rate (4kHz) and RI

Hyper-K 50cm PMT production

- Mass production started in Dec. 2020.
- Production was suspended to investigate their defect rate in April 2022.
- From May 2023, production resumed after improvement and screening by manufacturer.
- Delivery completion remains unchanged as originally scheduled.
- Constant quality inspections at Kamioka are ongoing.

Hyper-K Photosensors

Multi-PMT (mPMT) modules

- 19 3-inch PMTs and electronics arranged inside a pressure resistant vessel
- Improvements for Cherenkov ring reconstruction and reference for detector calibration

OD PMT+WLS units

- 3-inch PMT attached to wavelength shifting plate
- To veto cosmic-ray muons

Design finalization ongoing

Hyper-K Electronics

- Front-end electronics placed in underwater vessels
- Two types of underwater electronics vessels
 - Inner detector vessels: 24 ID channels read out by two PCBs
 - Hybrid outer + inner detector vessels: 20 ID + 12 OD channels

Preliminary

ID 12-channel front-end board

OD 6-channel FE board

21

Hyper-K Calibration

- Various programs to determine detector parameters and measure systematics
- Pre-calibration of photosensors
- Photogrammetry
- Light Injection
 - Diffusers and collimators
 - mPMT system
 - OD injectors
- Electron LINAC
 - 3-24 MeV electrons
- Radioactive Sources
 - DT Source 16N
 - AmBe + BGO tagged neutrons
 - Ni/Cf 9 MeV g cascade

Photosensor Test Facility

Photogrammetry testing

Ni/Cf source

LINAC beam simulation

(b)

J-PARC Upgrade

Neutrino detectors at J-PARC

Critical components to precisely understand J-PARC beam and neutrino interactions:

- On-axis detector: Measure beam direction and event rate
- Off-axis magnetized tracker: Measure primary (anti)neutrino interaction rates, spectrum, and properties. Charge separation to measure wrong-sign background
 > Upgrade by T2K experiment and Intensive discussion for further upgrade in HK-era is on-going.
- Intermediate WC detector: H₂O target with off-axis angle spanning orientation.
 → Detector site investigation and conceptual facility design are on-going.

Conclusions

- Hyper-Kamiokande is 3rd generation water Cherenkov detector in Kamioka
- Important physics targets
 - Neutrino CP violation: Discovery with 5 σ for ~60% parameter regions
 - Nucleon Decay Search for testing GUT: $\tau > 10^{35}$ years for $p \rightarrow e^{\scriptscriptstyle +} \pi^0$
 - Neutrino Astrophysics: Supernova neutrinos
- Hyper-Kamiokande construction on schedule
 - World's largest underground facility: 260 kton water Cherenkov detector
 - Access tunnel and cavern construction on track
 - 50cm PMT production underway
 - Other detector component designs being finalized
 - Neutrino beam upgrade to 1.3 MW
 - Near detector upgrade and design of intermediate detector being finalized
- Hyper-Kamiokande will start operation in 2027.