DEEP UNDERGROUND NEUTRINO EXPERIMENT

Status and Prospects

Matteo Tenti (INFN - Bologna) for the DUNE Collaboration.

Fundamental Questions

 What is the origin of neutrino mixing? Is there an underlying flavor symmetry?

What is the origin of neutrino mass?
 Why are the neutrinos so light?

• Is leptogenesis a viable explanation to baryon asymmetry ?

Are there sterile neutrinos?
 Is the PMNS matrix unitary?

Neutrino Oscillations

Impressive progress since 1998

M. Tenti, DUNE status and prospects, NNN23

Experimental Strategy

$$\mathcal{A}_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \sim \frac{\cos\theta_{23}\sin2\theta_{12}\sin\delta_{CP}}{\sin\theta_{23}\sin\theta_{13}} \left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \text{matter effects}$$

Long baseline + wide-band beam: unfold CPV and matter effects using information from the first and second oscillation maxima.

- Baseline ~ 1000 km
- 1st peak at ~ 2 GeV
- 2nd peak at ~ 0.5 GeV

P5 & ESPP Recommendations

Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

(kt) of liquid argon (LAr) and a suitable near detector. The minimum requirements to proceed are the identified capability to reach an exposure of at least 120 kt*MW*yr by the 2035 timeframe, the far detector situated underground with cavern space for expansion to at least 40 kt LAr fiducial volume, and 1.2 MW beam power upgradable to multi-megawatt power. The experiment should have the demonstrated capability to search for supernova (SN) bursts and for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime.

P5 & ESPP Recommendations

Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

f) Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector. *CERN should develop a neutrino programme to pave the way for a substantial European role in future long-baseline experiments*. *Europe should explore the possibility of major participation in leading long-baseline neutrino projects in the US and Japan*.

bility to search for supernova (SN) bursts and for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime.

- 1440 collaborators
- 37 countries
- 208 institutions including CERN

DUNE Collaboration Meeting, CERN January 2023

The Deep Underground Neutrino Experiment (DUNE)

A new generation Long-Baseline – 1300 km – neutrino oscillation experiment based on

- a wide band high intensity (1.2 MW upgradable to 2.4 MW) v/\overline{v} neutrino beam produced at Fermilab
- a large total mass (~70 kton) Far Detector at the Sanford Underground Neutrino Facility (SURF) 1.5 km underground exploiting the Liquid Argon Time Projection Chamber (LArTPC) technology
- a Near Detector complex (ND) at Fermilab providing control of systematic uncertainties, enabling a rich physics program

DUNE and its Physics Program in one slide

- Measurement of CP violation phase and determination of the neutrino mass ordering in a single experiment using spectral information
- \bigcirc Underground location \rightarrow access to astrophysical neutrinos
 - Supernova neutrino burst detection sensitive to the v_e component
 - Atmospheric neutrino capability of v_{τ} identification
 - Solar neutrinos potential for detection of hep flux
- Massive detectors with tracking and calorimetric information
 - -~ Search for baryon number violating processes p \rightarrow v K+, n \overline{n}
- Song baseline + higher energy neutrino beam
 - ν_{τ} appearance, NSI searches
- Capable Near Detector Complex
 - Precise neutrino physics (cross sections, nuclear effects)
 - BSM searches

arXiv 1807.10334

The Long-Baseline Neutrino Facility (LBNF) and DUNE

DUNE experiment is enabled by LBNF providing

- a high intensity wide-band neutrino beam
- a deep underground lab in South Dakota and Near Detector infrastructures

Sanford Underground Research Facilities

11 11/10/2023

M. Tenti, DUNE status and prospects, NNN23

Excavation Progress – Reached 80% on 25 September 2023

INFN DUNE

North Detector Cavern

- View of east end of cavern
- 12' of additional benching to be performed when this photo was taken
- 3D VR photos available

Photo by Matt Kapust, SDSTA Aug 2023

Central Utility Cavern

- Excavation of Central Utility Cavern is complete!
- 90% of cavern concrete slab is in place

The LBNF beamline at FNAL

LBNF will use protons from the Main Injector

MI will start at 1.2 MW (Phase 1) and be upgraded to 2.4 MW (Phase 2)

Proton Improvement Plan (PIP II): upgrade of LINAC to reach 1.2 MW

The LBNF beam

- Neutrino beamline at a slope of 5.8°
- Primary proton beam (60-120 GeV) on a graphite target (1.1 – 1.9)10²¹ pot/yr
- Horns/beam line designed to maximize CP violation sensitivity
- Pulse duration: 10 µs
- Forward/Reverse Horn Current (FHC/RHC) v/\overline{v} -enhanced,
- Wide band beam

The Near Detector Complex

- Measures the neutrino beam rate and spectrum to predict un-oscillated event rates in the far detector
- Constrains systematic uncertainties (flux, cross sections, detector response) for oscillation measurements
- Additional physics program

Configuration (Phase I):

- ND-LAr: 7 x 5 array of modular 1x1x3 m³ LArTPCs with pixel readout
- **TMS:** Magnetized steel range stack for measuring muon momentum/sign from ν_{μ} CC interactions in ND-LAr
- DUNE-PRISM: ND-LAr + TMS move up to 28.5 m off-axis

SAND:

 On-axis magnetized neutrino detector with LAr target (GRAIN), tracking (STT), and calorimeter (ECAL)

M. Tenti, DUNE status and prospects, NNN23

DUNE - Far Detector Modules 1&2

LAr TPC

Liquid Argon TPC (C. Rubbia, 1977) is the technique with the best particle imaging capability at kton scale:

FD1-HD «Horizontal drift»

- 150 Anode Plane Assemblies (APAs)
- 384,000 readout wires
- Anode-Cathode 3.5 m drift;
- 500 V/cm field; cathode at -180 kV;
- 6000 photon detection system (PDS) channels
- PDS X-Arapuca modules embedded in APA

- Charge Readout Planes : perforated PCB's with segmented electrodes (strips)
- CRPs at the top and bottom
- Cathode (-300 kV) in the middle

FD2-VD «Vertical drift»

- two 6.5 m drift chambers 450 V/cm field
- X-Arapuca modules integrated on cathode and on cryostat walls.

M. Tenti, DUNE status and prospects, NNN23

The Cryostats

4 vessels already constructed (protoDUNE, SBND,..)

Membrane cryostat with passive insulation (CERN/GTT design) internal volume : ~28'500 m³ ~17'500 tons of LAr

4 modules of 17 kt active mass

19 m

17.8 m

- FD-I and FD-II LAr TPC
- FD-3 TBD (by 2027),
- FD-4 : «module of opportunity»: decision by 2028

65.9 m

ProtoDUNE's @ the CERN Neutrino Platform

- Two 750 t prototypes ~8 x 8 x 8 m³
- Design validation of all FD components at full scale
- ProtoDUNE Single-Phase Horizontal Drift:
 - Charged particle beam + cosmic rays runs (2018-2020)
 - Event reconstruction, full analysis
 - Excellent performance
 - New run in 2024
- ProtoDUNE Dual-Phase evolved to Single Phase Vertical Drift late 2020
 - SP-VD charged beams + CRs in 2024

ProtoDUNE-DP/SP-VD

ProtoDUNE-SP-HD

ProtoDUNE SP-HD Performance

CINFN DUNE

LArTPC performances

- Clean separation of v_{μ} and v_{e} charged currents
- Low thresholds for charged particles
 - \rightarrow precise reconstruction of lepton and hadronic energy
 - $\rightarrow E_{\nu}$ reconstruction over broad energy range

Antineutrinos

v_e , \overline{v}_e oscillation shapes $P(v_{\mu} \rightarrow v_e) vs P(\overline{v}_{\mu} \rightarrow \overline{v}_e)$

Mass ordering and CP violation induce different shapes in v_e , \overline{v}_e oscillation probabilities

DUNE's unique capability: with a wide band beam measures these shapes over more than a full period, resolving degeneracies

- mass ordering
- CP violation
- θ_{23} octant

with a single experiment

DUNE FD Data

Convolution of oscillation probabilities with neutrino beam flux & crosssections & detector response

Oscillation sensitivities: simultaneous fit over four components of FD data (disappearance and appearance spectra) with ND constraints

M. Tenti, DUNE status and prospects, NNN23

DUNE sensitivities - <u>*Phase I*</u>

DUNE will unambigously resolve the neutrino mass ordering at 3σ (5σ) level with a 66 (100) kt-MW-yr exposure

DUNE can measure CPV at 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values $\delta_{\rm CP} = \pm \pi/2$

CPV

Phys. Rev D 105 (2022) 072006

DUNE sensitivities at higher exposures (Phase II)

To achieve all P5 goals it is need : Detector Mass 40 kton (4 modules) + Beam power upgrade to 2.4MW + Improved Systematics (Near detector upgrade)

If $\delta_{CP} = \pm 90^{\circ}$, CP violation at 3σ in Phase I

Phase II: If $\delta_{CP} = \pm 90^{\circ} 5\sigma$ in 7 years For 50% of δ_{CP} values 5 σ CPV in 12 years

M. Tenti, DUNE status and prospects, NNN23

Proton Decay Search

- $p \rightarrow K^+ \overline{\nu}$ dominant in SUSY GUT models
- LArTPC technology has the **unique capability** to observe the entire decay chain for proton decays into charged kaons
- Identify isolated kaon by dE/dx and decay products
 → main background: atmospheric neutrinos
- BDT exploiting energy deposition topology and supported by CNN provides
 - Signal: 15% efficiency
 - Background: ~ 1 ev/Mk-year
- Sensitivity:
 - Assuming no signal in 10 y, 40 kt FV and an improved 30% signal efficiency:
 - + 1.3 \times 10 34 years (90% C.L.)

SN burst neutrinos

Eur. Phys. J. C (2021) 81

DUNE sensitive to v_e CC events by $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$ exploiting the Ar target and to v ES on electrons thanks to its large mass

Solar neutrinos

DUNE sensitive to

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

$$\nu_{e,\mu,\tau} + e^- \rightarrow \nu_{e,\mu,\tau} + e^-$$

- observable sensitive only to electron neutrino flavor

- observable sensitive to all neutrino flavors.

(*) F. Capozzi et al PRL 123 (2019) 13

On-going work on solar neutrinos Sensitive to ⁸B and hep fluxes Measure oscillation parameters Proposals for the 4th module to enhance low energy physics programme

Conclusions

- LBNF/DUNE: the ultimate neutrino facility/observatory
- DUNE will enable very rich physics program in the next decades (LifeCycle 20 years):
 - Neutrino oscillations
 - Studies of MeV-scale neutrinos
 - Several BSM searches
- LBNF and DUNE making rapid progress on facility construction, detector design, and physics analysis + ProtoDUNE run 2 in 2024

ÍNFŃ

Thank You!

- 1440 collaborators
- 37 countries
- 208 institutions including CERN

DUNE's spokespersons

Sergio Bertolucci

DUNE Collaboration Meeting, Fermilab, May 2023

Backup

Sterile Neutrinos

Sterile Neutrino Sensitivity

DUNE v_e , \bar{v}_e spectra can distinguish Mass Ordering in Phase I

DUNE v_e , \bar{v}_e spectra can measure δ_{CP} , θ_{23} octant in Phase II

The Near Detector Complex – Phase II

... not a complete clear picture vet

Phys Rev D 106, 032004 (2022)

ref. ICARUS at FNAL

The «anomalies»

Construction of APAs

M. Tenti, DUNE status and prospects, NNN23

Neutrinos: Open Questions

	$ heta_{23}$	$ heta_{13}$	$ heta_{12}$	δ
Leptons	$\sim 45^{\circ}$	8.5°	34°	?
Quarks	2.4°	0.20°	13°	69°

Is the θ_{23} mixing maximal? $\theta_{23} = 45^{\circ} \rightarrow |U_{\mu3}| = |U_{\tau3}|$

- What is the neutrino mass ordering? (Is Δm_{32}^2 positive or negative?)
- Is there leptonic CP violation?
- Is θ_{23} mixing maximal?
- Is the PMNS matrix unitary?
- Can neutrinos explain the matterantimatter asymmetry in the Universe?
- What is the neutrino absolute mass scale?
- Are neutrinos Majorana particles?

Neutrino Oscillations in DUNE

beam spectrum covers the full neutrino oscillation curve

not simply a counting experiment

BSM Physics

Baryon number violation, dark matter searches, sterile neutrinos, etc.

Example: proton decay

- Underground location
- Large fiducial mass
- Imaging capabilities

 $p \rightarrow K^+ \overline{\nu}$ dominant SUSY GUT model

- Identify kaon by dE/dx and decay product
- Main background: atmospheric neutrinos

Neutrino Oscillations in DUNE

beam spectrum covers the full neutrino oscillation curve

not simply a counting experiment

Neutrino oscillations in the 3-neutrino framework

PMNS Ma

of θ_{23}

$$\begin{array}{lll} \mbox{PMNS Matrix} & U = \begin{pmatrix} 1 & \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ 1 & \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 1 \end{pmatrix} & \begin{array}{lll} & c_{13} & s_{13}e^{-i\delta} \\ s_{1j} = \sin \theta_{ij} & s_{1j} = \sin \theta_{ij} \end{pmatrix} \\ & = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}c_{13}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}s_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \end{pmatrix} \\ & \mbox{Public} \\ \mbox{Public} \\ \mbox{v}_{e} \mbox{ appearance : mass} \\ \mbox{ordering, } \delta_{CP} \ , \ octant \\ \mbox{of } \theta_{23} \\ \mbox{v}_{\mu} \ disappearance: \\ & \Delta m_{32}^2 \ | \ \sin \theta_{23}^2 \\ constrain \ octant } \end{array} \\ \begin{array}{l} \mbox{J}_{CP}^{\max} = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \cos^2 \theta_{13} \sin \theta_{13} \\ & \Delta \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}} & A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2} & \alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2 & V_C = \sqrt{2}G_F n_e . \end{array} \\ \begin{array}{l} \mbox{for } \sigma & \Delta m_{31}^2 \\ \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{21}^2 / \Delta m_{31}^2 & V_C = \sqrt{2}G_F n_e . \end{array} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2 \end{array} \\ \label{eq:constrain octant} \end{array} \\ \begin{array}{l} \mbox{and } \sigma & \Delta m_{31}^2$$

A Phased Approch

• Two Far Detector modules

• 1.2 MW proton beam

 Three near detectors including temporary muon spectrometer (TMS)

• Four Far Detector modules

• 2.4 MW proton beam upgrade (most intense neutrino beam in the world)

• Full Near Detector suite (TMS replaced)

DUNE and Hyper-K: different detectors, different strategy

• DUNE:

- + Very long baseline \rightarrow large matter effect
- Broadband neutrino beam \rightarrow high statistics over full oscillation period
- LArTPC \rightarrow imaging + calorimetry for v-Ar interactions at ~2.5 GeV
- Highly-capable near detector to constrain systematic uncertainties
- Hyper-K:
 - Shorter baseline \rightarrow small matter effect
 - Off-axis location creates narrow beam → very, very high statistics at oscillation maximum, less feed-down
 - Water Cherenkov \rightarrow kinematic measurement of E_v from v-O interactions at ~0.6 GeV
 - Highly-capable near detector to constrain systematic uncertainties

CPV Sensitivities

Michael B. Smy on behalf of the Hyper-Kamiokande Collaboration <u>Phys. Sci. Forum 2023, 8(1), 41</u>

arXiv:2002.03005

CP Violation Sensitivity

Figure 5.17: Significance of the DUNE determination of CP-violation (i.e.: $\delta_{CP} \neq 0$ or π) as a function of the true value of δ_{CP} , for seven (blue) and ten (orange) years of exposure. True normal ordering is assumed. The width of the transparent bands cover 68% of fits in which random throws are used to simulate statistical variations and select true values of the oscillation and systematic uncertainty parameters, constrained by pre-fit uncertainties. The solid lines show the median sensitivity.

CPV Sensitivities

