

T2K latest oscillation analysis and cross-section results

Lorenzo Magaletti (Politecnico di Bari & INFN Bari) On behalf of the T2K collaboration

NNN23: 22nd International Workshop on Next Generation Nucleon Decay and Neutrino Detectors I Ith October 2023

Mixing of three neutrinos

Neutrino oscillations at T2K

Near detector complex

at 280 m from the target

Intense high purity muon (anti)neutrino beam from J-PARC to Super-K to study:

- \checkmark Muon (anti) neutrino disappearance $\nu_{\mu} \not \rightarrow \nu_{\mu} (\bar{\nu}_{\mu} \not \rightarrow \bar{\nu}_{\mu})$
- Electron (anti) neutrino appearance $\nu_{\mu} \rightarrow \nu_{e} (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$
- Rich program of:
 - neutrino cross sections studies with near detectors
 - 🗳 "exotic" physics: sterile neutrinos, etc...

Â

TRIUMF U. Regina U. Toronto U. Victoria U. Winnipeg York U.

CERN

Japan

ICRR Kamioka **ICRR RCCN** Kavli IPMU Keio U. KEK Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U. Tohoku U. Tokyo Institute Tech Tokyo Metropolitan U. Tokyo U of Science U.Tokyo Yokohama National U. **ILANCE**

~575 physicists, 75 institutions, 14 countries

USA

Boston U.

United Kingdom

Imperial C. London King's College London Lancaster U. Oxford U. Royal Holloway U.L. STFC/Daresbury STFC/RAL U. Glasgow U. Liverpool U. Sheffield U.Warwick

Hungary Eötvös Loránd U.

France

CEA Saclay LLR E. Poly. LPNHE Paris

Spain

IFAE, Barcelona IFIC, Valencia U. Autonoma Madrid U. Sevilla

Germany

RWTH Aachen Universität Mainz

Poland

IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U.T. Wrocław U.

Russia INR JINR

Colorado S. U. Duke U. U. Houston Louisiana State U. Michigan S.U. SLAC Stony Brook U. U. C. Irvine U. Colorado U.Pennsylvania U. Pittsburgh U. Rochester U.Washington

ITALY

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Switzerland

ETH Zurich U. Bern U. Geneva

Vietnam

IFIRSE Hanoi Univ. Science

Neutrino appearance and disappearance at T2K

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta m_{31}^2 \frac{L}{4E}$$

Precision measurement of θ_{23} and Δm^2_{31} CPT test with anti-neutrino mode $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

θ_{13} dependence of the leading term

 \mathbf{P} $\mathbf{\theta}_{23}$ dependence of the leading term ($\mathbf{\theta}_{23}$ =45° or $\mathbf{\theta}_{23} \ge 45°$?)

Solution: asymmetry of probabilities $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ if sin $\delta \neq 0$

Matter effect: v_e (\bar{v}_e) appearance enhanced in normal (inverted) mass hierarchy

Learning from ν_{e} ($\bar{\nu}_{e}$) appearance

sin²2 θ_{13} and sin² θ_{23} enhance/suppress both ν_{e} and $\bar{\nu}_{e}$ appearance

7

The off-axis neutrino beam

Enhance neutrino oscillation effects
 Enhance CCQE-like interactions (signal at Super-Kamiokande)
 Reduce background from π⁰ interactions

 E_{v} (GeV)

New flux tuning & uncertainty with T2K replica target

ND280 (off-axis 2.5°)

Magnet: B = 0.2T**TPC:** p measurement + particle-ID with dE/dx **FGD:** Fine-grained detectors $(2 \times 0.8 t) \rightarrow FGDI$ (C), FGD2 (C+H₂O) **SMRD:** magnetized muon range detector

- **POD:** pi-zero detector (Pb/brass-H₂O-scintillator)
- **ECal:** electromagnetic calorimeter

7)

ĕ

ŏ

WAGASCI-Baby MIND (off-axis 1.5°)

WAGASHI: plastic scintillator detector filled with water (~ 80%) **BabyMIND**: magnetised iron and scintillator (μ charge and range) Not used yet in the oscillation analysis

INGRID (on-axis)

 v_{μ} CC rate \rightarrow monitor beam profile and stability

Fe/Scintillator tracking calorimeter (16 Fe/Scint modules + 1 central one made of scintillator only)

The T2K off-axis near detector: ND280

- Solution ND280 samples of ν_{μ} ($\bar{\nu}_{\mu}$) interactions in Carbon (FGDI) and water (FGD2) have been employed in the near detector analysis.
- FGD2 samples are useful for a **better cancelation of systematic uncertainties** caused by nuclear effects on neutrino-water cross-sections.
- $\stackrel{\scriptstyle \vee}{=}$ Possibility to add the **"wrong sign"** samples to better constrain the ν_{μ} contamination in $\bar{\nu}$ beam mode

Far detector: Super-Kamiokande

Electron or muon PID discriminator

0

 $\nu_{\rm e}$ and $\overline{\nu}_{\rm e}$ charged current

 $v_{\rm II}$ -like

1.000

2,000

Neutral current

Collected data

Results shown today with 3.6×10²¹ POT

РОТ	ND		FD		
Beam Mode	ν	$\overline{\nu}$	ν	$\overline{\nu}$	
This Analysis	1.39×10 ²¹	0.63×10 ²¹	1.97×10 ²¹	1.63×10 ²¹	

Oscillation analysis strategy

Neutrino cross sections model improvements

- AtT2K energies the favoured interactions are CCQE
 - Other neutrino interactions with production of **pions** in the final state are important as well
 - **Nuclear effects** can mimic a CCQE interaction

Mimic CCQE interactions:

- Neutrino scatters on a correlated pair of nucleons (called multi-nucleon or 2 particle-2 hole, **2p-2h**)
- Neutrino scatter produces a pion, which is re-absorbed in the nucleus
- Neutrino scatter produces a pion absorbed by the detector

CCQE:

- Improved uncertainties for the spectral function model, specifically normalisation of nuclear shell model and short range correlations.
- New treatment of binding energy.
- Replaced ad-hoc Q² normalisations with Pauli blocking

2p2h/MEC:

Better descriptions of 2p2h proton-neutron/ neutron-neutron pair contributions.

CCRes:

- New bubble-chamber tuning of Rein-Sehgal model parameters.
- Effective inclusion of **binding energy**.
- New Δ resonance decay uncertainty
- Solution $\mathbf{\pi}^{\pm}$ New uncertainty in $\mathbf{\pi}^{\pm}$ vs $\mathbf{\pi}^{\mathbf{0}}$ production

🗳 FSI:

New nucleon final state interactions (FSI) uncertainty.

link to NuFACT talk on Neutrino interaction models

New ND280 samples in neutrino beam mode

ND280 samples in neutrino beam mode

5 × 2 neutrino beam mode ND280 samples used in the oscillation analysis

ND280 samples in neutrino beam mode

6 × 2 anti-neutrino beam mode ND280 samples used in the oscillation analysis

Super-K samples

Results: θ_{23} vs Δm^2_{23}

World-leading measurement of sin² θ₂₃
 Results continue to be consistent with maximal mixing/oscillation
 No significant differences between ν and ν̄
 Reactor constraint applied (sin² 2θ₁₃ = 0.0861 ± 0.0027)

Results: δ_{CP} confidence regions

T2K + Reactor θ_{13} (sin² $2\theta_{13}$ = 0.0861 ± 0.0027)

CP conservation ($\delta_{CP} = 0, \pi$) excluded at 90% C.L.

Ş	Best fit	value	near	maximal	СР
	violation	<mark>ι (-π/2</mark>)		

Confidence level	Interval (NH)	Interval (IH)
1σ	[-2.75, -0.94]	
90%	[-3.10, -0.45]	[-2.01, -0.86]
2σ	$[-\pi, -0.21] \cup [3.02, \pi]$	[-2.31, -0.62]
3σ	$[-\pi, 0.39] \cup [2.55, \pi]$	[-2.89, -0.09]

T2K Run 1-10, preliminary

Oscillation parameters at the limit
 Maximal mixing in θ₂₃
 Maximal ν_e/ν_e asymmetry
 Consistent w/ PMNS, within stat.
 +syst. errors

Antineutrino mode e-like candidates 24 22 20 18 $\sin^2\theta_{23} = 0.45, 0.50, 0.55, 0.60$ $\Delta m_{22}^2 = 2.51 \times 10^{-3} \text{ eV}^2$ 16 $\Delta m_{31}^{\bar{2}^{-}} = -2.47 \times 10^{-3} \text{ eV}^2$ $\delta_{CD} = \pi$ 14 $\delta_{CP} = +\pi/2$ $\delta_{CP} = 0$ $\delta_{\rm CD} = -\pi/2$ 12 68% syst err. at best-fit ▼ Best-fit 10 Data (68% stat err.) T2K Run 1-10, 2022 preliminary 2080 60 40 100 120 Neutrino mode e-like candidates

Latest x-sec results

CC Coherent on Carbon @ ND280

Solution \mathbf{P} Vertex activity = Energy deposited around the vertex \mathbf{P} |t| \rightarrow Momentum transfer from $\boldsymbol{\mu}$ and $\boldsymbol{\pi}^{+}$ kinematics

CC Coherent on C @ ND280

Update of 2016 ν_{μ} results

- **First** measurement of $\bar{\nu}_{\mu}$ CC Coherent cross-section at ND280
- Presently compatible with both Berger Sehgal (NEUT) and Rein Sehgal (GENIE)

On/off-axis CC0pi cross-section

- Goal of the analysis: measure CC0pi x-sec in two independent detectors (INGRID & ND280) at different fluxes
- INGRID on-axis proton module for cross sections
 - PID via dE/dx & range
 - Momentum by range ND280 off-axis (B field)
- 500 Num. Events Data ND280 CC-0π 73.65 % 400 CC-1π⁺ 9.86 % CC-other 11.39 % BKG 3.04 % 300 out FV 2.06 % T3K Preliminary 200 100 SMP **UA1 Magnet Yoke** 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Reconstructed p (GeV/c) stents 1400 Proton Module CC-0π 63.07% CC-1^{1/2} 14.52% Downstream ш.₁₂₀₀ ш.₁₂₀₀ М.₁₀₀₀ CC-Other 12.76% ECAL detector BKG 5.94% Solenoid Coil out FV 3.71% Data PR Preliminary 800 INGRID 600 **Barrel ECAL** P0D **ECAL** 400 200

0 🗖

0

20

10

30

40

50 Reconstructed muon angle (degrees)

60

70

80

90

On/off-axis CC0pi cross-section

T₂K

Differential cross-section in muon **kinematics** 70 cross-section bins: 58 ND280 ŏ **12 INGRID** ŏ no single model can describe all bins Most tension in on-axis, forward-going **Results consistent with previous T2K** results

σ

Prospects

T2K-NO ν A joint fit

NOvA eV 120 GeV
eV 120 GeV
m 810 km
eV 2 GeV
renkov Segmented Liq scin. bars
22%
29%

- Combined analysis ongoing
 - Scan lead to increased sensitivity
- Degeneracy between δ_{CP} and mass hierarchy can be lifted.

T2K-SK joint fit

Furthermore...

J-PARC accelerator upgrade

- 🏺 Near detector upgrade (<mark>see Xingyu Zhao talk</mark>)
- New data with **Gd loaded SK** which will enable use of neutron tagging information.
- New SK multi-ring samples that can improve our sensitivities to oscillation parameters.

Conclusions

Presented the latest T2K results from 2022 analysis

Several improvements in the oscillation analysis

- When the second second
- New cross-section model constrained with ND280 data
- New ND280 and Super-K samples

$\frac{1}{2}$ Data continue to prefer maximal θ_{23} mixing, $\delta_{CP} \sim -\pi/2$ and NH

- Generating values are excluded at 90% C.L.
- Mild preferences for normal ordering and upper octant

New x-sec results from ND280:

- $\stackrel{\scriptstyle \ensuremath{{\scriptscriptstyle \$}}}{=}$ New results on CC0 π and CC Coherent x-sec
- A lot of x-sec measurements ongoing:
 - ν_{μ} CCIK⁺ on CH @ ND280, CC0π on water and CH @ WAGASCI, NCIπ^{0/+} on CH/H₂O @ ND280, (anti-) ν_{μ} CCIπ⁺⁽⁻⁾ on CH/H₂O @ ND280, ...

Prospects:

- $\stackrel{\scriptstyle \swarrow}{=}$ T2K-SK joint analysis to improve sensitivity to δ_{CP}
- = T2K-NO ν A joint analysis to disentangle degeneracy between δ_{CP} and mass hierarchy
- Near detector and beam upgrade to enter in the precision era of neutrino oscillation.

Neutrino oscillations

10

100

0.8

0.6

0.4

0.2

0

0.1

1

 $\langle L/E \rangle \, [\mathrm{km/GeV}] \quad \Delta m^2 \, [\mathrm{eV}^2]$

 $\langle P_{
u_{lpha} o
u_{eta}}(L,E)
angle$

Neutrinos produced in weak processes (V_{α}) are linear combinations of mass eigenstates (V_i)

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matr

Time evolution: flavor content "oscillates" in L(distance)/E(neutrino)

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} -4\sum_{i>j} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2} \left[1.27\Delta m_{ij}^{2}(L/E)\right] +2\sum_{i>j} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2} \left[2.54\Delta m_{ij}^{2}(L/E)\right]$$

$$Oscillation amplitude oscillation frequency Parameters controlled by experiments$$

$$L/E << \Delta m^{2} \text{ no time for the oscillation to develop} L/E >> \Delta m^{2} \text{ only average oscillation probability can be measured}$$

 $L/E \approx \Delta m^2$ best sensitivity to oscillation

35

The neutrino beam: flux predictions

Fluxes are predicted from a data-driven simulation → NA61/SHINE experiment measures hadron production cross sections using a T2K replica target

Neutrino cross sections at T2K energies

- At T2K energies the favoured interactions are CCQE
 - Other neutrino interactions with production of **pions** in the final state are important as well
 - **Nuclear effects** can mimic a CCQE interaction

Mimic CCQE interactions:

- Neutrino scatters on a correlated pair of nucleons (called multi-nucleon or 2 particle-2 hole, 2p-2h)
- Neutrino scatter produces a pion, which is re-absorbed in the nucleus
- Neutrino scatter produces a pion absorbed by the detector

Improvements of neutrino interaction model in NEUT:

- Improved pion production model with tuning to data on hydrogen and deuterium
- Inclusion of a model for multi-nucleon scattering processes: Valencia 2p-2h model (Phys. Rev. C83 (2011) 045501)

Improved the CCQE model by including the effect of long-range correlations in the nucleus (calculation technique called random phase approximation, RPA)

Super-K samples

Pion samples @ SK

Fitted spectra at Super-Kamiokande

v beam mode

 Oscillation and systematic parameters are shared between the 6 samples
 Fit simultaneously the 6 samples to maximize the sensitivity to the oscillation parameters

Fitted spectra at Super-Kamiokande

1.2

ND280 best fit nuisance parameters

ND280 constraints for Super-Kamiokande

Number of Events Number of Events 25F T2K Run 1-10, 2022 preliminary T2K Run 1-10, 2022 preliminary T2K Run 1-10, 2022 preliminary 12 8 Pre-ND Pre-ND Pre-ND 7Ē 20 Post-ND Post-ND Post-ND 15 10 0 0.2 0.4 0.6 0.8 1.2 1.4 0.2 0.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2 1.42 Number of Events Number of Events T2K Run 1-10, 2022 preliminary T2K Run 1-10, 2022 preliminary T2K Run 1-10, 2022 preliminary 1.8 Pre-ND Pre-ND Pre-ND 1.6 1.6E 1.4F Post-ND Post-ND Post-ND 1.2 TITLE 0.8 0.8 0.6 0.6E 0.4 0.4 0.2F 0.2 0 0.2 0.5 2.5 0.4 0.6 0.8 1.2 1.5 0.2 0.4 0.6 0.8 1.2 2 Reconstructed Neutrino Energy [GeV] Reconstructed Neutrino Energy [GeV] Reconstructed Neutrino Energy [GeV]

Before ND280 fit

v beam mode

	1	1R M		1Re			
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5
Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5
SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6

T2K Run 1-10, preliminary

	1	R	MR			$1 \mathrm{R} e$	
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

After ND280 fit

v beam mode

T2K Run 1-10, preliminary

T2K upgrades

J-PARC upgrades

- Operation at a higher beam intensity.
 750 kW → 1 MW
- Subsequent upgrade of neutrino beamline to support the beam intensity.
- Horn power supply ramp up for better focusing. 250 kA → 320 kA
- Expected to be ready for autumn 2023

ND upgrades

- New complex detectors to replace the old P0D detector.
- This will improve our constraints on flux and interaction uncertainties, and also paves way for better xsec measurements.
- Expected to start data taking in 2023

FD upgrades

- Gadolinium was loaded into SK in summer 2020 in different stages with different concentration
- This leads to improved neutron tagging and hence better $\nu/\overline{\nu}$ separation.
- T2K took its Run11 data using SK-Gd, although not yet used in the analysis.

