

Combined neutrino oscillation analysis between Super-Kamiokande and T2K

Aoi Eguchi (University of Tokyo) on behalf of Super-Kamiokande Collaboration and T2K Collaboration

Outline

• This is the first time we show the data fit results of joint SK + T2K oscillation analysis.

Introduction

- Super-Kamiokande (SK) and T2K experiments
- Motivation of the joint analysis

Analysis method

- Treatment of systematic uncertainties
- Two fitters used for the Bayesian analysis
- Data fit result (Bayesian analysis)
 - Credible intervals
 - Bayes factors for different hypothesis
 - Study of the robustness of the analysis

Conclusion

Wednesday, 11th October, 2023 NNN23 @ Procida

Introduction

Super-Kamiokande (SK) and T2K experiments
Motivation of the joint analysis

A. Eguchi SK+T2K joint analysis

 Neutrino flavor (interaction) eigenstates are the superimposition of the mass eigenstates. • Mixing is usually described with the PMNS matrix:

$$\begin{array}{ccc} \mathsf{Atmospheric} & \mathsf{Reactor} & \mathsf{Solar} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\mathsf{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\mathsf{CP}}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \quad \begin{array}{c} c_{ij} \equiv \cos \theta_{ij} \\ s_{ij} \equiv \sin \theta_{ij} \\ s_{ij} \equiv \sin \theta_{ij} \end{pmatrix}$$

NNN23 @ Procida Wednesday, 11th October, 2023

 Neutrino flavor (interaction) eigenstates are the superimposition of the mass eigenstates. • Mixing is usually described with the PMNS matrix:

• Neutrino changes its flavors while it propagates long distances \rightarrow Neutrino oscillation

Wednesday, 11th October, 2023 NNN23 @ Procida

 Neutrino flavor (interaction) eigenstates are the superimposition of the mass eigenstates. • Mixing is usually described with the PMNS matrix:

Atmospheric

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} \\ 0 \\ -s_{13}e^{-1} \end{pmatrix}$$

• Neutrino changes its flavors while it propagates long distances \rightarrow Neutrino oscillation

NNN23 @ Procida

Oscillation probability depends on

- Neutrino energy E_{ν}
- Mixing angles θ_{ii}
- CP phase δ_{CP}

• Square mass difference $\Delta m_{ii}^2 \equiv m_i^2 - m_i^2$.

- We can constrain these parameters through the measurement of oscillation probabilities.

SK+T2K joint analysis A. Eguchi

 Neutrino flavor (interaction) eigenstates are the superimposition of the mass eigenstates. • Mixing is usually described with the PMNS matrix:

Atmospheric

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} \\ 0 \\ -s_{13}e^{-1} \end{pmatrix}$$

• Neutrino changes its flavors while it propagates long distances \rightarrow Neutrino oscillation

Open questions in neutrino oscillation physics:

- **CP** symmetry (value of δ_{CP})
- Mass ordering (sign of Δm_{32}^2)
- Octant of θ_{23} ($\theta_{23} < \pi/4$ or $\pi/4 < \theta_{23}$)

A. Eguchi SK+T2K joint analysis

Wednesday, 11th October, 2023 NNN23 @ Procida

Super-Kamiokande Experiment

Super-Kamiokande (SK) experiment

A. Eguchi

- 50 kton water Cherenkov detector located in Gifu, Japan
 - Good e/μ separation (mis-PID < 1% at 1 GeV)
 - Cannot separate $\nu/\bar{\nu}$ event-by-event basis

SK+T2K joint analysis

NNN23 @ Procida

11,129 20-inch PMT (inner detector)

Super-Kamiokande Experiment

Super-Kamiokande (SK) experiment

- 50 kton water Cherenkov detector located in Gifu, Japan
 - Good e/μ separation (mis-PID < 1% at 1 GeV)
 - Cannot separate $\nu/\bar{\nu}$ event-by-event basis
- SK atmospheric neutrinos have wide ranges of E_{ν} and L. - Oscillations of neutrinos passing through the Earth are largely **affected by the matter effect**.

A. Eguchi SK+T2K joint analysis

n Gifu, Japan 1 GeV) Isis

NNN23 @ Procida

11,129 20-inch PMT (inner detector)

T2K (Tokai-to-Kamioka) experiment

• Long baseline neutrino oscillation experiment ($L \simeq 295$ km)

A. Eguchi SK+T2K joint analysis

NNN23 @ Procida Wednesday, 11th October, 2023

T2K (Tokai-to-Kamioka) experiment

- Long baseline neutrino oscillation experiment ($L\simeq 295~{
 m km}$)
- Primarily $u_{\mu}/\bar{\nu}_{\mu}$ neutrino beam produced at J-PARC ($E_{\nu} \simeq 0.6~{
 m GeV}$)

NNN23 @ Procida

A. Eguchi SK+T2K joint analysis

nt ($L \simeq 295$ km) J-PARC ($E_{\nu} \simeq 0.6$ GeV)

Wednesday, 11th October, 2023

T2K (Tokai-to-Kamioka) experiment

A. Eguchi

- Long baseline neutrino oscillation experiment ($L\simeq 295~{
 m km}$)
- Primarily $u_{\mu}/\bar{\nu}_{\mu}$ neutrino beam produced at J-PARC ($E_{\nu} \simeq 0.6~{
 m GeV}$)
- Use the near detector to constrain the cross-section and flux uncertainties

SK+T2K joint analysis

NNN23 @ Procida

nt ($L \simeq 295 \text{ km}$) J-PARC ($E_{\nu} \simeq 0.6 \text{ GeV}$) s-section and flux uncertainties

T2K (Tokai-to-Kamioka) experiment

- Long baseline neutrino oscillation experiment ($L \simeq 295$ km)
- Primarily $\nu_{\mu}/\bar{\nu}_{\mu}$ neutrino beam produced at J-PARC ($E_{\nu} \simeq 0.6$ GeV)
- Use the near detector to constrain the cross-section and flux uncertainties
- Super-Kamiokande is used as the far detector

A. Eguchi

SK+T2K joint analysis

NNN23 @ Procida

UAI Magnet Downstream Barrel ECal **PODECal** POD **Near Detectors J-PARC** Materials and Life Science 1,700 m below sea level Experimental Facility **Neutrino Beam** 3 GeV Rapid Cycle Synch. (25 Hz, 1MW) Linac (330m) Tokai J-PARC = Japan Proton Accelerator Research Co

T2K (Tokai-to-Kamioka) experiment

A. Eguchi

- Long baseline neutrino oscillation experiment ($L \simeq 295$ km)
- Primarily $\nu_{\mu}/\bar{\nu}_{\mu}$ neutrino beam produced at J-PARC ($E_{\nu} \simeq 0.6$ GeV)
- Use the near detector to constrain the cross-section and flux uncertainties
- Super-Kamiokande is used as the far detector

SK+T2K joint analysis

flux.

NNN23 @ Procida

• We expect to have several benefits beyond the increased statistics.

- T2K and SK use the same detector and have samples with similar energy ranges and similar selections. • We can take into account the correlations of the systematic uncertainties.
- - T2K near detector can be used to constrain the cross-section uncertainties for the low-energy atmospheric samples as well.

A. Eguchi SK+T2K joint analysis

NNN23 @ Procida

• The additional benefit of the joint fit

• T2K has **better sensitivity to** δ_{CP} from $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}$ oscillation and to $\theta_{23}, \Delta m_{32}^2$ from $\stackrel{(-)}{\nu}_{u} \rightarrow \stackrel{(-)}{\nu}_{u}$

Wednesday, 11th October, 2023

• The additional benefit of the joint fit

• The event rate of $\nu_e/\bar{\nu}_e$ depends on the value of $\delta_{\rm CP}$

NNN23 @ Procida

• The additional benefit of the joint fit

• The event rate of $\nu_e/\bar{\nu}_e$ depends on the value of $\delta_{\rm CP}$

NNN23 @ Procida

• The additional benefit of the joint fit

• The event rate of $\nu_e/\bar{\nu}_e$ depends on the value of $\delta_{\rm CP}$

NNN23 @ Procida

Wednesday, 11th October, 2023

• The additional benefit of the joint fit

• The event rate of $\nu_e/\bar{\nu}_e$ depends on the value of $\delta_{\rm CP}$

NNN23 @ Procida

Wednesday, 11th October, 2023

• The additional benefit of the joint fit

- The event rate of $\nu_e/\bar{\nu}_e$ depends on the value of $\delta_{\rm CP}$.
- However, δ_{CP} and **neutrino mass ordering** have a similar effect to the $\nu_e/\bar{\nu}_e$ event rates we observe in T2K (we call this "degeneracy" of the oscillation parameter).

Number of T2K beam $\nu_e/\bar{\nu}_e$ events with different sets of oscillation parameter values

NNN23 @ Procida

• The additional benefit of the joint fit

regions, which is not degenerate with δ_{CP} .

• SK has stronger discrimination of the mass ordering thanks to the matter effect at the few GeV

NNN23 @ Procida

- oscillation parameters and mass ordering.

 - T2K can constrain $\sin^2 \theta_{23}$ better and it improves the mass ordering sensitivity in the atmospheric oscillations as the resonance is $\sin^2 \theta_{23}$ -dependent.

A. Eguchi SK+T2K joint analysis

• We expect to break the degeneracy by combining these two experiments to get better sensitivity to

• The atmospheric neutrino oscillation can break the **degeneracy between** $\delta_{\rm CP}$ and mass ordering.

Samples used in this analysis
Treatment of systematic uncertainties
Two fitters used for the Bayesian analysis
Study of the robustness of the model using the simulated data

A. Eguchi SK+T2K joint analysis

a Wednesday, 11th October, 2023

Data Set and Samples

• 5 T2K beam samples and 18 SK atmospheric samples are fitted simultaneously.

- T2K near detector is used to constrain the beam flux and low-energy cross-section parameters.
- Data set before Gd loading is used.

T2K Run 1-10 (not the latest analysis) [Eur.Phys.J.C 83 (2023) 9, 782]

- Neutrino mode: 19.7×10^{20} POT
- Antineutrino mode: 16.3×10^{20} POT
- Mean neutrino energy ~ 0.6 GeV

A. Eguchi

SK+T2K joint analysis

Wednesday, 11th October, 2023 NNN23 @ Procida

Data Set and Samples

• 5 T2K beam samples and 18 SK atmospheric samples are fitted simultaneously.

- Data set before Gd loading is used.

[Eur.Phys.J.C 83 (2023) 9, 782]

SK+T2K joint analysis

• T2K near detector is used to constrain the beam flux and low-energy cross-section parameters.

Flux

 Flux systematics are taken from each experiment and treated as uncorrelated between T2K and SK. • T2K: FLUKA2011 and GEANT3 MC simulation tuned to the NA61/SHINE experiment at CERN which uses the T2K replica target [Eur.Phys.J.C 76 (2016) 11, 617].

- SK: Honda flux calculation [Phys.Rev.D 83 (2011) 123001]

A. Eguchi SK+T2K joint analysis

NNN23 @ Procida

- Correlation of the flux models is one of the possible updates in future analysis (work ongoing at SK to implement tuning to the same or similar external hadron production measurements)

SK IV Atmospheric

Wednesday, 11th October, 2023

Detector

• The same detector/simulation software/reconstruction tool is used for the samples of both experiments.

selection is applied).

Correlated detector systematics

• Correlations between T2K and SK detector systematics are taken into account by reevaluating the T2K detector systematics using the atmospheric MC (reweighted to the T2K flux and the T2K

Among the atmospheric parameters,

- •Single-ring PID
- •Fiducial volume
- Ring separation

have strong correlations with the beam part

Wednesday, 11th October, 2023

Detector

• The same detector/simulation software/reconstruction tool is used for the samples of both experiments.

NNN23 @ Procida

- selection is applied).
- statistics.

Correlated detector systematics

SK+T2K joint analysis A. Eguchi

• Correlations between T2K and SK detector systematics are taken into account by reevaluating the T2K detector systematics using the atmospheric MC (reweighted to the T2K flux and the T2K

• Including the correlations makes the analysis more robust but has a limited impact at current

Effect of the correlation on the sensitivity

Wednesday, 11th October, 2023

Cross-Section

• SK atmospheric covers a wider range of energies than T2K. • Use different models for low-energy and high-energy samples.

Use a common cross-section model with T2K

SK+T2K joint analysis A. Eguchi

NNN23 @ Procida

		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	Low-energy sub-GeV atm + beam	High-energy multi-GeV atm
	T2K model with N correlated in low-E/high	D280 constraint, E (except for high-Q ²)
CCQE	high-Q ² params w/ND280	high-Q² params w/o N
	add v_e/v_μ ratio unc. (CRPA)	
2p2h	T2K model w/ND280	SK model (100% erro + T2K-style shape
Resonant	T2K model w/ND280 + new pion momentum dial + NC1π0 uncertainties	SK model for 3 dials common with T2 use more recent larger T2K pr
DIS	T2K model w/ND280	SK model
$ u_{ au}$	SK model (25% norm for other systematics checked that we	on top of other syst) have no numerically unstable values
FSI	T2K model w/ND280	T2K model w/o ND28 should be mostly same as SK r
SI	T2K model, correlat only applied to FC and PC for	ed in low-E/high-E atm, PN not applied to atm

Wednesday, 11th October, 2023

Cross-Section

SK atmospheric covers a wider range of energies than T2K.
 Use different models for low-energy and high-energy samples.

• Low energy (beam and atmospheric Sub-GeV samples)

- Use the T2K model [ref] as the base which is constrained by the T2K near detector
- Some extra parameters are added to cover important uncertainties for the atmospheric analysis.

A. Eguchi

SK+T2K joint analysis

		สารรับรับว่าสีวิทย์เป็นสรีเอาโรกรับออสสารรับการที่ได้มีแล้วยาโรกรับออสสารรับออสสารที่ได้มีแล้วเป็นไม	
		Low-energy sub-GeV atm + beam	High-energy multi-GeV atm
	0005	T2K model with N correlated in low-E/high	280 constraint, E (except for high-Q²)
	CCQE	high-Q ² params w/ND280	high-Q ² params w/o N
ו		add ν_e/ν_μ ratio unc. (CRPA)	
•	2p2h	T2K model w/ND280	SK model (100% erro + T2K-style shape
	Resonant	T2K model w/ND280 + new pion momentum dial + NC1π0 uncertainties	SK model for 3 dials common with T2 use more recent larger T2K pr
	DIS	T2K model w/ND280	SK model
	ντ	SK model (25% norm for other systematics checked that we	on top of other syst) have no numerically unstable values
	FSI	T2K model w/ND280	T2K model w/o ND28 should be mostly same as SK r
	SI	T2K model, correlate only applied to FC and PC for	ed in low-E/high-E atm, PN not applied to atm

NNN23 @ Procida

Cross-Section

• SK atmospheric covers a wider range of energies than T2K. • Use different models for low-energy and high-energy samples.

Low energy (beam and atmospheric Sub-GeV samples)

- Use the T2K model [ref] as the base which is constrained by the T2K near detector
- Some extra parameters are added to cover important uncertainties for the atmospheric analysis.

• **High energy** (rest of atmospheric samples) • Use a modified SK model [<u>ref</u>] including additional systematics uncertainties.

SK+T2K joint analysis A. Eguchi

	Low-energy sub-GeV atm + beam	High-energy multi-GeV atm
0005	T2K model with N correlated in low-E/hig	D280 constraint, hE (except for high-Q ²)
CCQE	high-Q ² params w/ND280	high-Q ² params w/o N
	add ν_e/ν_μ ratio unc. (CRPA)	
2p2h	T2K model w/ND280	SK model (100% erro + T2K-style shape
Resonant	T2K model w/ND280 + new pion momentum dial + NC1π0 uncertainties	SK model for 3 dials common with T2 use more recent larger T2K pr
DIS	T2K model w/ND280	SK model
ντ	SK model (25% norm for other systematics checked that we	on top of other syst) have no numerically unstable values
FSI	T2K model w/ND280	T2K model w/o ND28 should be mostly same as SK r
SI	T2K model, correlated only applied to FC and PC for	t <mark>ed in low-E/high-E</mark> r atm, PN not applied to atm

NNN23 @ Procida

Wednesday, 11th October, 2023

• Frequentist analysis (not shown in this talk)

• Bayesian analysis (shown in this talk)

A. Eguchi SK+T2K joint analysis

NNN23 @ Procida Wednesday, 11th October, 2023

• Frequentist analysis (not shown in this talk)

- For the construction of frequentist CL, the fixed- $\Delta \chi^2$ method ($\Delta \chi^2 = 1, 4, ...$ for $1\sigma, 2\sigma, ...$) does not guarantee the correct coverage in the neutrino oscillation analysis. - Conditions for Wilks' theorem are not met (e.g. small statistics, parameters with boundary (e.g. $\sin \delta_{CP}$), degeneracy, etc).
- Feldman-Cousins (FC) method is frequently used in which we need to fit many toys but this is computationally prohibitive for the joint analysis due to the longer time to fit toys.
- Ongoing work to perform FC and CLs in a reasonable timescale for the joint analysis.

Bayesian analysis (shown in this talk)

NNN23 @ Procida Wednesday, 11th October, 2023

• Frequentist analysis (not shown in this talk)

- For the construction of frequentist CL, the fixed- $\Delta \chi^2$ method ($\Delta \chi^2 = 1, 4, ...$ for $1\sigma, 2\sigma, ...$) does not guarantee the correct coverage in the neutrino oscillation analysis. - Conditions for Wilks' theorem are not met (e.g. small statistics, parameters with boundary (e.g. $\sin \delta_{CP}$), degeneracy, etc).
- Feldman-Cousins (FC) method is frequently used in which we need to fit many toys but this is computationally prohibitive for the joint analysis due to the longer time to fit toys.
- Ongoing work to perform FC and CLs in a reasonable timescale for the joint analysis.

Bayesian analysis (shown in this talk)

• Bayesian credible intervals can be constructed from the posterior probability distributions without fitting many toys.

- The conclusion may depend on the

A. Eguchi SK+T2K joint analysis

prior choice.

$$p(\theta | x) = \frac{\substack{\text{likelihood prio} \\ \mathscr{L}(\theta | x) \pi(\theta)}{p(x)}$$
NN23 @ Procida Wednesday, 11th October, 2023

• We check the validity of the results by performing multiple analyses.

- Four analysis methods have been prepared for this joint analysis.
- methods.

All of them use the same analysis model but use different implementations and fitting

Wednesday, 11th October, 2023 NNN23 @ Procida

• We check the validity of the results by performing multiple analyses.

- Four analysis methods have been prepared for this joint analysis.
- methods.

In this talk, we will show the results of two analyses that can produce Bayesian results.

	Analysis 1	Analysis 2
Oscillation probability Systematic response	Binned	Event by event / Binned
T2K sample binning	$(E_{\rm rec}, \theta)$ for μ -like samples (p, θ) for e -like samples	$(E_{\rm rec})$ for μ -like samples $(E_{\rm rec}, \theta)$ for <i>e</i> -like samples
T2K near detector constraint	Gaussian approximation (Sequential fit)	Full likelihood (Simultaneous fit)
Fast oscillation smearing	Semi-analytic averaging	Down-sampling finer to coarser grid
Earth density	Average density $+$ deviations	Average density
quchi SK+T2K joint ana	alysis NNN23 @ Procic	da Wednesday, 11th Octob

• All of them use the same analysis model but use different implementations and fitting

Wednesday, 11th October, 2023 NNN23 @ Procida

Data Fit Result (Bayesian Analysis)

Credible intervals

Bayes factors for different hypothesis

In the following results, a Gaussian constraint of $\sin^2 2\theta_{13} = 0.0853 \pm 0.0027$ is applied from the reactor experiments.

A. Eguchi SK+T2K joint analysis

Wednesday, 11th October, 2023 NNN23 @ Procida

Data Fit δ_{CP} Credible Intervals

 $\delta_{\rm CP}$ credible intervals

• CP conserving values ($\delta_{CP} = 0, \pi$) are **excluded at** 2σ when the flat prior in δ_{CP} is applied.

NNN23 @ Procida

A. Eguchi SK+T2K joint analysis

$\delta_{\rm CP}$ posterior distributions with reactor constraint Inverted ordering SK+T2K preliminary, Analysis 1 **Posterior density** 1.0 Flat in δ_{CP} lσ 2σ 0.8 3σ 0.6 0.4 0.2 0.0 -2 2 -1 0 $\boldsymbol{\delta}_{CP}$

Data Fit δ_{CP} Credible Intervals $\delta_{\rm CP}$ credible intervals • CP conserving values ($\delta_{CP} = 0, \pi$) are **excluded at** 2σ when the flat prior in δ_{CP} is applied. • However, $\delta_{CP} = \pi$ is not excluded in normal ordering when the flat $\sin \delta_{CP}$ prior is applied. [see backup for these prior choices] $\delta_{\rm CP}$ posterior distributions with reactor constraint Normal ordering Inverted ordering SK+T2K preliminary, Analysis 1 SK+T2K preliminary, Analysis 1 Posterior density Posterior density 0.8 1.0 Flat in $\sin \delta_{CP}$ Flat in δ_{CP} Flat in δ_{CP} Flat in $\sin \delta_{CP}$ --- lo --- lo $l\sigma$ 0.7 lσ ----- 2o 2σ ---- 20 2σ 0.8 3σ 0.6 3σ 0.5 0.6 0.4 0.4 0.3 0.2 0.2 0.1 0.0 0.0-2 -2 -1 -3 0 2 0 2

SK+T2K joint analysis A. Eguchi

NNN23 @ Procida

 δ_{CP}

Wednesday, 11th October, 2023

41

 $\boldsymbol{\delta}_{CP}$

Data Fit Jarlskog Invariant Intervals

Jarlskog invariant credible intervals

SK+T2K joint analysis A. Eguchi

 $J_{\rm CP} = s_{13}c_{13}^2 s_{12}c_{12}s_{23}c_{23}\sin\delta_{\rm CP}$ • CP conserving value ($J_{CP} = 0$) is **excluded at** 2σ with both the flat δ_{CP} and flat $\sin \delta_{CP}$ priors.

J_{CP} posterior distributions with reactor constraint

NNN23 @ Procida

Wednesday, 11th October, 2023

Data Fit δ_{CP} and Jarlskog (Both Ordering)

 δ_{CP} and Jarlskog invariant credible intervals marginalized over both mass ordering. • CP conserving values are excluded around 2σ .

SK+T2K joint analysis A. Eguchi

Both ordering SK+T2K preliminary, Analysis 1 Posterior density 250 Flat in $\sin \delta_{CP}$ Flat in δ_{CP} **--** · 1σ 1σ ----- 2o 2σ 200 3σ 150 100 50 -0.04 -0.02 0.00 0.02 0.04 $J \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}sin\delta$

NNN23 @ Procida

Wednesday, 11th October, 2023

Data Fit Atmospheric Parameters

A. Eguchi

SK+T2K joint analysis

• Δm_{32}^2 posterior distribution shows a clear preference for the normal ordering ($\Delta m_{32}^2 > 0$).

Gaussian smearing of $\sigma = 3.6 \times 10^{-5} \text{ eV}^2$ is applied to take into account the possible bias from the out-of-model effect [backup].

Δm_{32}^2 posterior distributions with reactor constraint

NNN23 @ Procida

Wednesday, 11th October, 2023

Data Fit Atmospheric Parameters

$\circ \sin^2 \theta_{23}$ shows an almost equal preference for both the upper and lower octant in normal ordering, while it prefers the upper octant in the inverted ordering.

NNN23 @ Procida

$\sin^2 \theta_{23}$ posterior distributions with reactor constraint

Wednesday, 11th October, 2023

Data Fit SK+T2K/T2K/SK Comparison

 To understand the contributions of each sample, T2K-only and SK-only (with T2K near detector) constraint) fits are also performed.

• The δ_{CP} and Δm_{32}^2 constraints are dominated by T2K, but SK also contributed.

A. Eguchi SK+T2K joint analysis

Comparison of the $\delta_{\rm CP}$ and Δm_{32}^2 posterior distribution for the fit with different sets of samples

NNN23 @ Procida

Wednesday, 11th October, 2023

Data Fit SK+T2K/T2K/SK Comparison

• There is some tension between SK and T2K for $\sin^2 \theta_{23}$, and the joint fit therefore has a very similar likelihood in both lower and upper octant.

SK+T2K joint analysis A. Eguchi

NNN23 @ Procida

Wednesday, 11th October, 2023

Data Fit SK+T2K/T2K/SK Comparison

- compared to the joint SK+T2K fit.
 - octant.

SK+T2K joint analysis

A. Eguchi

NNN23 @ Procida

Data Fit Mass Ordering and Octant

The mass ordering Bayes factor is ~9.0, suggesting a weak preference for normal ordering.

Posterior probabilities of different combinations of the mass ordering and octant

	T2K	I+SK
	Lower octant	Upper of
Normal ordering	0.367	0.533
Inverted ordering	0.022	0.078
MO Bayes factor $B(NO/IO)$	8.98 :	\pm 0.06
Octant Bayes factor $B(UO/LO)$	1.	57

SK+T2K joint analysis A. Equchi

• This corresponds to the probability of obtaining a ~1.64 σ deviation in a Gaussian assuming equal prior probabilities and is not enough to claim the rejection of inverted ordering.

 ctant

Wednesday, 11th October, 2023 NNN23 @ Procida

Data Fit Mass Ordering and Octant

The mass ordering Bayes factor is ~9.0, suggesting a weak preference for normal ordering.

The mass ordering Bayes factor is larger than the T2K-only or SK-only fits.

• While the octant Bayes factor becomes smaller.

	T2K+SK		T2K		SK (+ND)	
	Lower octant	Upper octant	Lower octant	Upper octant	Lower octant	Upper octant
Normal ordering	0.367	0.533	0.190	0.642	0.468	0.186
Inverted ordering	0.022	0.078	0.025	0.142	0.214	0.132
MO Bayes factor $B(NO/IO)$	$\left 8.98 \pm 0.06 \right $		4.96 ± 0.02		1.886 ± 0.008	
Octant Bayes factor $B(\text{UO/LO})$	1.57		3.65		0.47	

SK+T2K joint analysis A. Eguchi

Posterior probabilities of different combinations of the mass ordering and octant

SK+T2K preliminary, Analysis 1

Wednesday, 11th October, 2023 NNN23 @ Procida

Validation of the Model Robustness

- mis-modeling [see backup].
 - We tested 14 alternative models before the data fit and some of them showed nonnegligible biases in Δm_{32}^2 .
 - Therefore we decided to smear the Δm^2_{32} contour in the data fit by convolving the posterior distribution with a Gaussian ($\sigma = 3.6 \times 10^{-5} \text{ eV}^2$).

- $J_{\rm CP} = 0$) for Analysis 1. The 2σ interval edge of the Jarlskog invariant in Analysis 2 could be
- We also tested whether it would change our conclusion on the significance of CP violation. • The size of the shift in the credible interval edges of $\delta_{\rm CP}$ and Jarlskog invariant was checked. • None of them caused a shift of 2σ interval edges over the value of interest ($\delta_{CP} = 0, \pi$, affected by the possible bias.
 - It does not change our conclusion on CP violation around 2σ .

SK+T2K joint analysis A. Eguchi

• We evaluate the **possible bias** in the oscillation parameter measurement due to the possible

Wednesday, 11th October, 2023 NNN23 @ Procida

Main Conclusion on CP Symmetry

• The table below summarizes the conclusion on CP symmetry from different analyses.

around 2σ when the reactor constraint is applied.

						P	•
	Analysis	Prior	CP conserving value	1σ	90%	2σ	3σ
		Flat in S	$\delta_{ ext{cp}}=0,\pi$	\checkmark	\checkmark	\checkmark	×
	Applycia 1	Γ Iat III $O_{\rm CP}$	$J_{\text{CP}} = 0$	\checkmark	\checkmark	\checkmark	×
	Analysis 1	Flat in $\sin \delta$	$\delta_{\scriptscriptstyle m CP}=0,\pi$	\checkmark	\checkmark	×	×
		Γ Iat III SIII $O_{\rm CP}$	$J_{\text{CP}} = 0$	\checkmark	\checkmark	\checkmark	×
	Amplerain 9	Flat in $\delta_{\scriptscriptstyle \mathrm{CP}}$	$\delta_{ ext{cp}}=0,\pi$	\checkmark	\checkmark	\checkmark	×
			$J_{\text{\tiny CP}}=0$	\checkmark	\checkmark	\checkmark	×
	Analysis Z	Flat in $\sin \delta$	$\delta_{\scriptscriptstyle ext{CP}}=0,\pi$	\checkmark	\checkmark	×	×
		$ $ F at m sm $\sigma_{\rm CP}$	$J_{\text{CP}} = 0$	\checkmark	\checkmark	$\checkmark(\times)$	×
ed	X: not exclude	ed 🗸 (x): exclude	d but may not be robust agair	nst the	possible	bias from a	in out-«

SK+T2K joint analysis A. Equchi

• Based on this, we concluded that **CP conservation** ($\delta_{CP} = 0, \pi, J_{CP} = 0$) is excluded SK+T2K preliminary

 \checkmark (X): excluded but may not be robust against the possible bias from an out-of-model effect

NNN23 @ Procida

Summary

- The joint oscillation analysis of SK atmospheric + T2K accelerator neutrino has been performed.
 - correlated systematics and broken degeneracies.
- So far we have performed Bayesian analysis using two analysis methods and obtained consistent results from both analyses.
 - applied.
 - Slightly prefers the normal mass ordering with the Bayes factor of ~9.0.
 - Almost equal preference to the upper and lower octant.
- The frequentist analysis will be reported in the near future. Stay tuned!

Increased sensitivity was expected thanks to not only the increased statistics but also the

• CP conservation ($\delta_{CP} = 0, \pi, J_{CP} = 0$) is excluded around 2σ when the reactor constraint is

• Posterior predictive p-values of 0.236 (shape) and 0.189 (rate) indicate a good fit in joint analysis which is comparable to the individual analysis by each experiment [see backup].

Wednesday, 11th October, 2023 NNN23 @ Procida

Wednesday, 11th October, 2023 NNN23 @ Procida

List of SK Atmospheric Samples

18 samples are used in this analysis [more details: <u>PTEP 2019 (2019) 5, 053F01</u>]

Sample Name

SubGeV elike 0dcy SubGeV elike 1dcy SubGeV mulike 0dcy SubGeV mulike 1dcy SubGeV mulike 2dcy SubGeV pi0like MultiGeV elike nue MultiGeV elike nuebar MultiGeV mulike MultiRing elike nue MultiRing elike nuebar MultiRing nulike

PCStop

PCThru

UpStop mu UpThruNonShower mu

UpThruShower mu

A. Eguchi SK+T2K joint analysis

Category	Selection				
			e-like	0 dec	
				$1 \mathrm{dec}$	
	Sub CaV	Single-ring		0 dec	
	Sub-Gev		μ -like	$1 \mathrm{dec}$	
				$\leq 2 \ c$	
		Multi-ring	Two e -like rings		
Fully Contained (FC)			e-like	$\leq 1 \ c$	
	Multi-GeV	Single-ring		$0 \mathrm{dec}$	
			μ -like		
			<i>e</i> -like	$ u_e$ -lik	
		Multi-ring		$ar{ u}_e$ -lik	
				other	
			μ -like		
Partially Contained (PC)	No charge deposition in OD				
rartially Contained (FC)	Charge deposition in OD				
	Stopping				
Up-going Muon (UpMu)	Through-going Non-showering				
	Through-going Showering				

NNN23 @ Procida Wednesday, 11th October, 2023

Model Updates

 After reporting the sensitivity study in 2022 (<u>C. Bronner@Neutrino 2022</u> and <u>J. Xia@NOW2022</u>), we have made various updates to perform the data fit.

taken.

SK+T2K joint analysis A. Eguchi

• In particular, there was a data/MC excess in the down-going CC1 π atmospheric events (used for the validation as it is less affected by oscillation) and several countermeasures were

The updates include the following:

 Add a new Michel-electron and neutron separation • Update the definition of the Adler angle systematics Add new systematics to take into account the possible worse PID at low momentum (p < 0.25 GeV) • Re-evaluate the detector systematics and include the correlation between atmospheric and beam

Wednesday, 11th October, 2023 NNN23 @ Procida

Posterior Predictive P-Values

- fits.
 - Th th
 - It \ pro (th

SK+T2K joint analysis

A. Eguchi

				SK+	T2K prelimina	ry, Analysis
Ι.	1			Sample	Shape-based	Norm-base
e result	shows a goo	od agreeme	ent between	T2K FHC 1Rmu	0.240	0.175
a data a				T2K RHC 1 Rmu	0.643	0.735
e data al	ha the mode	21.		T2K FHC 1Re	0.209	0.519
	consistant v	with those y		T2K RHC 1 Re	0.625	0.483
	COnsistent v		alues	T2K FHC 1Re1de	0.912	0.456
oduced	by the officia	al analysis d	of T2K and SK	SK SubGeV-elike-0dcy	0.056	0.491
				SK SubGeV-elike-1dcy	0.519	0.519
ie total p	p-value is 0.C)49 [ref]).		SK SubGeV-mulike-0dcy	0.433	0.549
I		L]/		SK SubGeV-mulike-1dcy	0.435	0.517
		from Eur.Phys.J.C 83	(2023) 9, 782	SK SubGeV-mulike-2dcy	0.565	0.565
Table 12 Bre	akdown of posterior	predictive <i>p</i> -values	by sample,	SK SubGeV-pi0like	0.091	0.091
quoted separate	ely using a shape or rate	based calculation, de	emonstrating	SK MultiGeV-elike-nue	0.107	0.230
good compatib	ollity between the mode	and the data		SK MultiGeV-elike-nuebar	0.868	0.459
Selection		<i>p</i> -value		SK MultiGeV-mulike	0.848	0.515
		Shape	Rate	SK MultiRing-elike-nue	0.635	0.379
		Shape		SK MultiRing-elike-nuebar	0.632	0.445
$1 R \mu$	v-mode	0.48	0.18	SK MultiRing-mulike	0.578	0.283
	$\overline{\nu}$ -mode	0.85	0.74	SK MultiRingOther-1	0.741	0.349
1R <i>e</i>	v-mode	0.19	0.49	SK PCStop	0.356	0.550
inc		0.17	0.42	SK PCThru	0.338	0.546
	v-mode	0.61	0.39	SK UpStop-mu	0.346	0.537
1Re1de	v-mode	0.86	0.22	SK UpThruNonShower-mu	0.030	0.499
All		0.73	0.30	SK UpThruShower-mu	0.436	0.502
				Total	0.236	0.189

The posterior predictive p-values are computed for each set of SK+T2K, T2K-only, and SK-only

NNN23 @ Procida

Wednesday, 11th October, 2023

Posterior Predictive Distributions

• The posterior predictive distributions for the five T2K beam samples.

A. Eguchi

SK+T2K joint analysis

NNN23 @ Procida Wednesday, 11th October, 2023

Posterior Predictive Distributions

The posterior predictive distributions for the 18 SK atmospheric samples.

Reconstructed cos(zenith)

NNN23 @ Procida

A. Eguchi SK+T2K joint analysis

0.2 0.4 0.6 0.8

Reconstructed cos(zenith)

-1 -0.8 -0.6 -0.4 -0.2 0

Sensitivity Study (Old Model)

• CP conservation rejection power at various values of true δ_{CP} .

- CP violation sensitivity is dominated by T2K.
- The sensitivity is low in $\delta_{CP} > 0$ ($\delta_{CP} < 0$) for NO (IO) due to the degenerated effect of mass ordering and δ_{CP} .
- This degeneracy can be broken by the combined analysis.

SK+T2K joint analysis A. Eguchi

NNN23 @ Procida

Wednesday, 11th October, 2023

Bayesian Prior Choice

 Two widely accepted non-informative priors were tested in our analysis of CP violation. • Uniform δ_{CP} : closer to Jensen's prior for U(3) Haar measure • Uniform sin δ_{CP} : closer to Jeffreys' prior ($\propto \sqrt{\det I_{Fisher}}$) for this analysis

SK+T2K joint analysis A. Eguchi

Comparison of the two prior distributions in different parameter spaces

NNN23 @ Procida

Comparison of Two Methods

δ_{CP} credible intervals

Comparison of Two Methods

• Jarlskog invariant credible intervals $J_{\rm CP} = s_{13}$

 $J_{\rm CP} = s_{13}c_{13}^2 s_{12}c_{12}s_{23}c_{23}\sin\delta_{\rm CP}$

$J_{\rm CP}$ posterior distributions with reactor constraint and marginalized over both mass ordering

Comparison of Two Methods

Atmospheric parameters

- These differences are understood to be originating from the implementation differences.
- It does not affect our overall conclusions.

NNN23 @ Procida

Summary of the Oscillation Parameter

ullet The table below summarizes the 1σ credible intervals for oscillation parameters.

Normal ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle \mathrm{CP}}$	$\Delta m^2_{32} \ [10^{-3} \ {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\scriptscriptstyle \mathrm{CP}}$
Most probable value	0.0219	-1.872	2.511	0.549	-0.033
1σ	[0.0212, 0.0226]	[-2.464, -1.205]	[2.452, 2.571]	[0.459, 0.505] and $[0.521, 0.568]$	[-0.034, -0.026]
Inverted ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle ext{CP}}$	$\Delta m^2_{32} \ [10^{-3} \ {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\scriptscriptstyle \mathrm{CP}}$
Most probable value	0.0220	-1.476	2.484	0.558	-0.033
1σ	[0.0213, 0.0227]	[-2.003, -0.976]	[2.424, 2.541]	[0.508, 0.581]	[-0.034, -0.029]
Both ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle \mathrm{CP}}$	$\Delta m^2_{32} \ [10^{-3} \ {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\scriptscriptstyle \mathrm{CP}}$
Most probable value	0.0219	-1.797	2.510	0.549	-0.033
1σ	[0.0212, 0.0226]	[-2.417, -1.159]	[2.449, 2.568]	[0.461, 0.503] and $[0.520, 0.570]$	[-0.034, -0.026]

A. Eguchi SK+T2K joint analysis

SK+T2K preliminary, Analysis 1

NNN23 @ Procida Wednesday, 11th October, 2023

Validation of the Model Robustness

• We evaluate the possible bias in the oscillation parameter measurement due to the possible mis-modeling.

- smearing on the oscillation parameter.
- This first step is done based on MC, before performing the data fit.

SK+T2K joint analysis

A. Eguchi

• Generate a simulated data set using an alternative model and fit it with our nominal model. • If there is a significant bias, we update our model with additional systematics or apply

> Wednesday, 11th October, 2023 NNN23 @ Procida

Validation of the Model Robustness

The second step of the robustness test is done after the data fit.

- We take the difference between nominal fit and simulated data fit results.
- Impose this shift to the data fit to see if the bias in the interval edges can change our conclusion.
- This effect is tested on δ_{CP} and Jarlskog invariant (relevant to our CP statement).

NNN23 @ Procida

Result of the Robustness Study

• We have tested 14 alternative models before the data fit.

- Some fake data studies showed non-negligible biases in Δm_{32}^2 .
- Therefore we decided to smear the Δm^2_{32} contour in the data fit by convolving the posterior distribution with a Gaussian ($\sigma = 3.6 \times 10^{-5} \text{ eV}^2$).

NNN23 @ Procida

A. Eguchi SK+T2K joint analysis

Result of the Robustness Study

• Therefore it does not change our conclusion on CP violation around 2σ .

A. Eguchi SK+T2K joint analysis

• We also tested whether it can change our conclusion on the significance of CP violation. • The size of the shift in the credible interval edges of $\delta_{\rm CP}$ and Jarlskog invariant was checked. • None of them caused a shift of 2σ interval edges over the value of interest ($\delta_{CP} = 0, \pi, J_{CP} = 0$)

NNN23 @ Procida

Wednesday, 11th October, 2023

List of Robustness Test

• 14 simulated data studies have been performed to test a possible bias in the analysis.

- The first six studies are taken from Appendix B of <u>Eur.Phys.J.C 83 (2023)</u> <u>9, 782</u>.
- Two alternative nuclear models are tested (our baseline model is SF)
 - LFG+RPA [<u>ref</u>]
 - HF+CRPA [<u>ref</u>]
- **SF**: Spectral Function **LFG**: Local Fermi Gas **RPA**: Random Phase Approximation **HF**: Hartree-Fock **CRPA**: Continuum Random Phase Approximation
- The last six studies were included to test possible problems that would come with the joint fit.

SK+T2K joint analysis A. Eguchi

NNN23 @ Procida

	Model compon
Martini 2p2h	2p2h
ND280 data-driven pion kinematics	$CC1\pi$
$\rm CC0\pi$ non-QE alteration	$CC0\pi$
Removal energy	Nuclear Mod
Axial form factors	CCQE
Pion SI bug fix	$ $ CC1 π , CC n
LFG	Nuclear mod
CRPA	Nuclear mod
Pion multiplicity	$CCn\pi$
Energy-dependent $\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	$\sigma_{ u_e}/\sigma_{ u_\mu}$
Xsec-only fit	Fit
Atmospheric down-going $\mathrm{CC1}\pi$	$CC1\pi$
Atmospheric full-zenith CC1 π	$CC1\pi$
No-migration energy scale fit	Fit

