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• Neutrinos are	elusive	particles	that	rarely	interact	with	matter,	making	
their	detection and	study	incredibly	challenging.
– Neutrino	experiments	need	to	collect	massive	amounts	of	data	in	order	to see	a	

handful	of	neutrino	events.
– This	data	is	also	very	complex,	as	neutrino	interactions	can	produce	a	variety	of	

different	signatures.

• Challenges	for	standard	algorithms:
– Complex	pattern	recognition:	standard	algorithms	often	struggle	to	identify	

intricate	patterns	in	the	data.
– Potential	biases:	human	implementation	can	introduce	biases	that	affect	results.

• Machine	learning	(ML)	promise:
– ML	algorithms	have	the	capability	to	learn	from	data (simulation)	and	improve	their	

performance	over	time.
– Expect	ML	to	not	only	meet	the	challenges	but	also	potentially	lead	to	

groundbreaking	discoveries	in	neutrino	physics.

Why do we need machine learning?
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But... what is machine learning?
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• ML	is	a	subfield	of	artificial	intelligence	(AI).
• AI:	branch	of	computer	science	that	aims	to	build	algorithms	capable	of	performing	

tasks	typically	(traditionally)	accomplished	using	human	intelligence.

• ML	is	learning	from	data.
• There	is	no	learning	without	

data.
• ML	algorithms	only	learn	from	

the	data.
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*Source:	Stack	
Exchange

https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning
https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning


• Neutrino	experiments	often	involve	
complex	detectors	that	allow	us	to	collect	
data	in	the	form	of	images.
– Typically	serves	the	purpose	of	detecting	and	

characterizing	events	generated	by	neutrino	
interactions.

– Examples:	LArTPC detectors	(DUNE,	MicroBooNE,	
ICARUS),	Cherenkov	detectors	(Icecube,	
SuperK/HyperK),	scintillators	(NOvA,	T2K/HyperK)…

– Require	powerful	algorithms	to	deal	with	such	
complex	data.

Neutrinos and images
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https://novaexperiment.fnal.gov

arXiv:1705.04894v1	

https://t2k-experiment.org/t2k/



Computer vision
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• Deep	learning	has	been	the	dominant	approach	in	computer	vision	
research	for	the	past	decade.
• Applications	in	many	areas:	automotive,	healthcare,	robotics,	media,	

agriculture,	security,	physics…	

[Source:	
Openframeworks]
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• Study	of	visual	data	(images	and	videos).
• A	computer	“sees”	a	grid	of	numbers.
• Massive	amount	of	visual	data	produced	

every	day.
• Origin	in	the	late	50s.

• What about MLPs?
• Fully-connected	neural	networks	(FCNNs),	also	known	as	

dense	neural	networks	or	multi-layer	perceptrons (MLPs).
• Type	of	artificial	neural	network	where	each	neuron	in	one	

layer	is	connected	to	every	neuron	in	the	next	layer.	
• Require	a	fixed-size	one-dimensional	input,	resulting	in	an	

extremely	large	number	of	parameters.
• In	the	example,	the	input	(flattened)	has	3,072	values.	If	the	

first	layer	has	1,000	neurons,	that’s	3,072,000	parameters	
(without	bias)	for	only	the	first	layer!	

• They	are	not	translation	invariant.	

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


input learned	
kernel output	

(feature	map)

Image recognition (intuition)
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• Humans	break	down	images	into	different	parts	before	assembling	the	information	back	
together.

It	is	orange	with	black	stripes:	
it	is	a	tiger.	

It	is	gray	with	a	long	trunk:	
it	is	an	elephant.	

It	is	gray	with	a	long	trunk:	
it	is	an	elephant.	
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• Convolutional	neural	networks,	or	CNNs,	are	a	type	of	neural	network	architecture	specifically	
designed	for	image	recognition	tasks	in	computer	vision.
• Convolution:	element-wise	multiplication	and	sum	of	the	overlapping	elements	between	the	kernel	

and	the	input.
• CNNs	use	a	series	of	convolutional	layers	to	extract	hierarchical	features	from	images.	
• CNNs	have	achieved	state-of-the-art	performance	in various	computer	vision	tasks.
• They	are	(kind	of)	translation	invariant!



CNN example in neutrino physics: the DUNE CVN
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• Inspired	by	the	NOvA CVN:	J.	Phys.:	Conf.	
Ser. 888 012063.

• CVN	stands	for	“Convolutional	Visual	
Network”.
– Publication:	Phys.	Rev.	D 102,	092003.
– The	DUNE	FD	provide	three	“images”	of	each	

neutrino	interaction.
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Each	input	image	is	500	x	500	
pixels	in	size,	corresponding	
to	the	images	we	get	from	the	
three	wire	readout	planes.

First	few	layers	treat	the	
three	views	separately

Primary	output:
flavour identification

Neutrino	/	
antineutrino

Secondary	
outputs:
particle	
counting	for	
exclusive	final	
states

• The	primary	output	
results (flavour)	were	
used	in	the	official	DUNE	
neutrino	oscillation	
sensitivity	analyses.
• DUNE	Technical	Design	
Report	(TDR,	2020):	
arXiv:2002.03005.

• DUNE	Long-baseline	
(LBL)	analysis	(2020):	
https://doi.org/EPJC/S10
052-020-08456-Z.

• Milestone	for	the	
experiment!
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https://dx.doi.org/10.1088/1742-6596/888/1/012063
https://dx.doi.org/10.1088/1742-6596/888/1/012063
https://doi.org/10.1103/PhysRevD.102.092003
https://arxiv.org/abs/2002.03005
https://doi.org/EPJC/S10052-020-08456-Z
https://doi.org/EPJC/S10052-020-08456-Z


Understanding the CVN
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• Occlusion	tests:
– Hide	parts	of	
the	images	and	
check	how	the	
CVN	reacts	to	
the	changes.	

electron neutrino      
(𝜈e)

original occlusion map

muon neutrino 
(𝜈μ)

original occlusion map

Removing	the	start	of	the	electron	shower	
reduces	the	CC	𝜈e score,	as	expected

The	CVN	finds	the	vertex	a	bit	ambiguous,	
but	it	uses	the	end	point	of	the	muon	to	gain	

a	handle	on	the	event	type.
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Going further: handling sparse data
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• In	particle	physics	and	astrophysics,	data	is	often	sparse due	
to	the	nature	of	the	objects	being	studied	or	the	particles	
detected.

• This	poses	a	challenge	for	computer	vision,	as	standard	
CNNs	are	designed	to	work	with	dense	data.	To	address	this,	
researchers	are	developing	new	algorithms	and	techniques	
specifically	tailored	to	sparse	data.	
• For	example,	one	approach	is	to	use	Submanifold	Sparse	

Convolutional	Networks	(SSCN),	where	the	convolution	
operation	is	performed	only	on	the	non-zero	elements	of	the	
sparse	data,	resulting	in	an	efficient	computation.

• Example:	“Scalable,	End-to-End,	Deep-Learning-Based	Data	
Reconstruction	Chain	for	Particle	Imaging	Detector”	
(arXiv:2102.01033)

[Source: britannica.com]

“Dense” image

All pixels might 
be helpful for the 
classification.

Ideal for standard 
CNNs.

“Sparse” image
Most pixels are 
background.

A standard CNN 
would perform 
loads of useless 
computations.

Saúl Alonso-Monsalve – ETH Zurich

Another	solution	is	to	use	
Graph	Neural	Networks	(see	

Adam’s	talk!)

https://arxiv.org/abs/2102.01033
https://www.britannica.com/


• Case	study:	a	detector	concept	analogous to	the	
SuperFGD detector	from	the	T2K	experiment.
– Part	of	the	upgrade	of	the	near	detector	(ND280)	

of	the	T2K	experiment	in	Japan.
– Fully-active	fine-grained	scintillator	(FGD)	with	

three	views.

Our current work!
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– 2M	optically	
independent	cubes,	1	
cm3 per	cube.

– Spatial	localisation of	
scintillation	light.

2D	
projections

3D	
reconstruction

• Goal:	develop	a	deep-learning-based	analysis	
strategy	that	does	not	depend	on	the	neutrino	
interaction	model:
a) Distinguish	between	single	and	multi-primary-

particle	hits.
b) Fit	the	trajectory	of	single-particle	objects.
c) Understand	the	activity	at	the	vertex	of	

neutrino	interactions.



a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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Hit identification: single vs multi-particle hits
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• Classify	each	individual	hit	as:	
§ Single-particle	hit:	only	one	particle passes	through	the	hit	cube.
§ Multiple-particle	hit:	at	least	two	different	particles pass	through	

the	hit	cube.
§ Other:	crosstalk or	ghost.

• Using	a	submanifold	sparse	U-Net-based	neural	network	
architecture	(https://arxiv.org/abs/1706.01307).
§ More	computationally	efficient	than	standard	CNNs.

• Efficiencies:

• Excellent	single-particle	isolation	accuracy	allows	running	a	
further	NN-based	track	trajectory	fitting	on	single	particles,	
relying	on	detailed	MC	simulations	of	single	particles.

True	multi-particle True	single-particle True	other

Pred.	multi-particle 0.7777 0.1511 0.0711

Pred.	single-particle 0.0055 0.9654 0.0291

Pred.	other 0.0079 0.0479 0.9442

Saúl Alonso-Monsalve – ETH Zurich

True		(simulation)

NN	prediction

https://arxiv.org/abs/1706.01307


a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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• Main	results	(Commun. Phys 6, 119 (2023)):
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• The	improved	trajectory	fitting	significantly	improves	the	
charge	reconstruction,	PID	by	range,	and	momentum	by	
curvature.

Fitting particle trajectories

>30%	better	transformer	
resolution	compared	to	the	SIR-PF	

• Each	algorithm	outputs	the	fitted	3D	trajectory	
point	for	each	input	hit.

§Sampling	Importance	Resampling	Particle	Filter	(SIR-PF):	
first	reconstructed	hit	used	as	prior.	The	likelihood	relies	on	a	
precomputed	5-dimensional	histogram.
§Recurrent	neural	network	(RNN):	five	bi-directional	GRU	
layers,	50	hidden	units.
§Transformer:	5	encoder	layers,	8	heads,	hidden	size	of	64.

https://www.nature.com/articles/s42005-023-01239-4


a) Hit	identification.
b) Particle	trajectory	fitting.
c) Vertex	activity	fitting.

Approach
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Vertex activity: standard fitting method
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• Vertex	activity	(VA):	particles	releasing	their	energy	in	the	proximity	of	the	neutrino	interaction	
vertex but	that	do	not	show	visible	tracks	from	where	the	kinematics	can	be	reconstructed.
– A	“blob”	of	scintillation	light	is	observed.

§ The	fitting	method	is	highly	
computationally	expensive.
• Requires	a	large	number	of combinations	
of	parameters	to	be	simulated.	

• Unfeasible	in	practice.

Saúl Alonso-Monsalve – ETH Zurich

• Standard	VA	fitting	method:
§Goal:	build	the	neutrino	VA	in	forward	folding	from	
the	sum	of	single	particle	reconstructed	objects.

Particle	information	to	reconstruct:	#	of	particles	
(mostly	protons),	energy,	direction,	vertex	position.

§Method:	likelihood	fitting.
1. Simulating	any	possible	combination	of	the	VA	

parameters	and	build	VA.
2. Finding	the	VA	3D	image	(e.g. SFGD	hits)	that	

“best	fits”	the	data	and	find	the	“best-fit”	
parameters.
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Alternative: deep-learning approach
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• Event	config:	1	muon,	1-5	protons.
– 70%	accuracy	in	reconstructing	the	correct	

number	of	particles.
• >98%	assuming	a	±1	error.

– ~2	mm	vertex	resolution.
– Good	reconstruction	of	kinematics.

• Also	tested	configurations	with	nuclear	
clusters	(deuterium,	tritium)!
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Alternative: deep-learning approach
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o GAN-BF	=	Brute	force.
o GAN-GD	(avg) =	

Gradient-descent	
(average	result).

o GAN-GD	(best)	=	
Gradient-descent	(best	
result).

• The	generator	(GAN)	is	
fully	differentiable.
• Run	a	gradient-

descent	minimiser	to	
optimise	the	particle	
kinematics	further.



Summary
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• Machine	learning	could	be	a	key	tool for	neutrino	experiments.
– In	particular,	for	detectors	that	provide	fine	interaction	details	but	are	hard	
to	analyse	using	traditional	methods.

• Strongly	linked	with	computer	vision.
– Most	of	our	data	is	in	the	form	of	images.

• Successful	application	to	different	problems,	such	as:
– Flavour	identification,	final-state	particle	counting,	track	fitting,	etc.

• Current	and	future	work	requires	an	extensive	validation	of	the	methods	
and	application	to	experimental	data.
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Bonus

20

• Asked	the	Bing	AI	model	(https://www.bing.com/images/create)	to	generate	
images	from	the	following	prompt:
“Neutrino	interaction	powered	by	AI	happening	at	Procida Island	in	Italy”.	
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https://www.bing.com/images/create
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