Results and Prospects from Atmospheric and Solar Neutrinos

Yusuke Koshio Okayama University

22nd International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN23) 11-13 October, 2023 Procida, Italy

Atmospheric neutrino

Atmospheric neutrino

Cosmic rays strike air nuclei and the decay of the out-going hadrons gives neutrinos.

✓ Flux measurement by several experiments✓ Model calculation is consistent with data.

3 flavor neutrino oscillation analysis

3 flavor neutrino oscillation analysis

3 flavor neutrino oscillation analysis

Precise measurements with several experiments

Atmospheric neutrino

Physics targets other than neutrino oscillation

 \checkmark Foreground for studying astrophysical neutrinos such as DSNB.

 \checkmark Probes of very forward particle production phase space.

Flux prediction is important

- Energy region up to ~100GeV
 - ·3D Monte Carlo -> Honda, Bartol
- •Higher energy region

Geomagnetic field and atmosphere

$$\phi_{\nu_i} = \sum_{A} \phi_A \otimes \overset{\checkmark}{R} \otimes Y_{A \to \nu_i}$$

Primary cosmic-ray flux

(dominant uncertainties)

K. Sato, A. Fedynitch, Neutrino 2022

Hadron interactions

Improvement of hadron interaction arror 加速器実験の測定結果

🔆 : hadron interaction with nucle

Iternative view on interactions

Κ±

(主に長基線ニュートリノ振動実験を見据えて) HARP, BNL, NA61/SHINE, EMPHATIC ...

加速器実験でハドロン相互作用の精密測定が実行/

☞これら結果をATMNCに直接反映でき

Summary of atmospheric ν

- Three flavor oscillation analysis are performed to extract the neutrino oscillation parameters by atmospheric neutrino data.
- Current unknown parameters are expected to be determined by the atmospheric neutrino measurements in the next generation detectors.
- The flux uncertainty is important also for other physics, and will be reduced in near future.

Standard scenario

Recent results

Precision of the measurements becomes better and better.

15 CKAYAMA KAYAMA

Solar neutrinos

Recent results of neutrino oscillation by Super-K

NNN23, Procida, Italy, 12 Oct., 2023

16 KAYAMA MEREBER

Solar neutrinos

Recent results of neutrino oscillation by Super-K

Recent results of neutrino oscillation by Borexino

Consistent with the expectation from standard scenario (MSW-LMA).

Expect to solve the puzzle

NNN23, Procida, Italy, 12 Oct., 2023

CNO by Borexino

Latest results: B. Caccianiga, Neutrino 2022 Rate (CNO) = $6.7^{+2.0}_{-0.8}$ cpd/100t ϕ (CNO) = 6.6^{+2.0}-0.9 x 10⁸ ν cm⁻²s⁻¹

Prospects for solar neutrino

Expect more knowledge on metallicity problem

Prospects for S($_{\nu_e} + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

hep neut
$$u_{e,\mu, au} + e^-
ightarrow
u_{e,\mu, au} + e^-$$

Expect the first detection

NNN23, Procida, Italy, 12 Oct., 2023

Summary of solar ν

- Solar neutrinos except for hep were detected. Recent results provided good accuracy of each solar neutrino flux.
- There is a tension in Δm^2_{21} between Solar and KamLand. It will be solved in the next generation detectors.
- CNO neutrino is important for metallicity problem.

Thank you for your attention!