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High energy astrophysical neutrinos
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➡ JHEAp 36 (2022) 55-110

Neutrino astronomy Fundamental physics



Neutrino astronomy: why?

Neutrinos:
• neutral → trajectory not affected by 

magnetic fields, point back to the source
• weakly interacting → penetrate regions 

opaque to photons

Offer unique chance to
• access the highest energy universe
• unveil the origin of the cosmic rays, 

discovered ~100 years ago, still unknown origin 
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Neutrino astronomy: why?

proton-photon:
𝑝 + 𝛾 → Δ! → 𝜋" + 𝑝

→ 𝜋! + 𝑛

proton-nucleon:
𝑝 + 𝑝 → 𝑝 + 𝑝 + 𝜋"

→ 𝑝 + 𝑛 + 𝜋!

𝑝 + 𝑛 → 𝑝 + 𝑛 + 𝜋"
→ 𝑝 + 𝑝 + 𝜋#

Neutrinos:
Ø Provide a strong indication of hadronic 

acceleration in astrophysical sources
Ø Smocking gun of the cosmic-ray sources

𝜋" → 𝛾 + 𝛾

Also produced in the 
leptonic scenario via 
synchrotron emission
+ inverse Compton 
scattering

𝜈!: 𝜈": 𝜈# = 1: 2: 0
𝜈!: 𝜈": 𝜈# = 1: 1: 1

at the source

at Earth

𝜋! → 𝜇! + 𝜈$ → 𝑒! + 𝜈% + 𝜈̅$ + 𝜈$
𝜋# → 𝜇# + 𝜈̅$ → 𝑒# + 𝜈̅% + 𝜈$ + 𝜈̅$

Hadronic scenario



HE neutrino detection
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ν

µ
Cherenkov radiation 
detected by arrays of 
PMTs 

Position, time and charge 
used to reconstruct 
direction and energy

Three event 
topologies

µνµ

N X
W

ɣ

ν

ɣ

Cherenkov light in water/ice 

CC:  ν ℓ + N → ℓ+ X
NC:  ν ℓ + N → ν ℓ + X

Either CC or NC
interaction with a 
nucleon N



HE neutrino detection
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Main background:
Atmospheric muons and neutrinos

By selecting up-going events, 
neutrino telescopes can use the 
Earth as a shield against 
atmospheric muons

→ Different sky visibility 
depending on detector location
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HE neutrino telescopes today

Operating in full configuration:
o IceCube

Under construction:
o KM3NeT
o Baikal GVD

Decommisioned:
o ANTARES



ANTARES
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~60 m

450 m

Junction
boxes

Electro-optical
cable

Buoy

• Three-dimensional array of 885 PMTs 
• 12 vertical lines, 25 storeys
• 3 PMTs per storey
• PMT facing 45° downwards
• Instrumented volume ~0.01 km3

o Designed to detect ν with E > few GeV
o First detection line installed in early 2006
o Completed in 2008, decommissioned in 2022
o 2475 m depth in the Mediterranean Sea
o 40 km offshore from Toulon 



IceCube

99

89°59′24″S 63°27′11″W

• Completed in 2010
• Taking data since 2005 with partial configuration
• Between 1450 and 2500 m deep
• 86, 1km high, vertical lines, 5160 PMTs 
• Horizontal separation between strings: 125 m
• Vertical separation between DOMs: 17 m
• ~1 km3 instrumented volume
• Largest neutrino telescope in the world



Diffuse astrophysical neutrino flux
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The ensemble of all sources which are too faint to be 
detected individually will produce a diffuse neutrino flux

How to detect it: look for an excess of high-energy data 

Atmospheric background
Cosmic neutrinos
Data

𝐸

flux



Diffuse astrophysical neutrino flux
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The discovery (2013): HESE sample 2 years, 4.0σ

Events producing first light in the 
veto region discarded

➡ Science 342,6161: 1242856

Latest: HESE sample 7.5 years ➡ PoS(ICRC2019)1004

→ Mainly shower-like events from 
all-sky with energy above 30-50 TeV
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Diffuse astrophysical neutrino flux
Upgoing track sample

Earth used as a shield against 
atmospheric muons

Down-going
Up-going

→ Track-like events from the Northern 
Sky with energy above 100-200 TeV

➡ PoS(ICRC2019)1017Latest: 9.5 years 



13

Diffuse astrophysical neutrino flux
Spectral constraints derived from IceCube and ANTARES analysis

Slight tension between different measurements 
could be due to differences in 
• flavor composition, 
• energy range, 
• sky coverage,
• atmospheric background contamination

ANTARES results: mild excess (1.8σ)
Compatible with IceCube signal
➡ see talk by M. Spurio

➡ JHEAp 36 (2022) 55-110
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Diffuse astrophysical neutrino flux
Diffuse neutrino flux in a multi-messenger context

Same energy density for sub-TeV diffuse ɣ, HE neutrinos and UHE CRs → strong multi-messenger connection

➡ JHEAp 36 (2022) 55-110



Neutrinos from the Galactic Plane
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• Galaxy filled by CRs and ISM
→ CR collisions will produce γs and νs
→ Guaranteed neutrino component in the Southern 
Sky because of the presence of the Galactic Plane

Figure credit: L. Fusco
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Neutrinos from the Galactic Plane
Two search methods:

ON region

OFF regions

Galactic coordinates

Equatorial coordinates

Galactic 
center

Galactic 
center

1.  ON/OFF search 
• Limited dependency on models
• Only possible for mid-latatitude

detectors

2.  Template search 
• expected neutrino sky-map from models of 
Galactic diffuse neutrino emission
• model-dependent results
• whole sky is relevant

Expected neutrino flux 
per unit of solid angle
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Neutrinos from the Galactic Plane
Recent hint (2.2σ) for a TeV neutrino emission 
from the Galactic Ridge reported by ANTARES 

➡ see talk by 
M. Spurio

➡ Physics Letters B, Volume 841, 2023, 137951

Joint effort from ANTARES+IceCube

Start to constraint 
the models

➡ Astrophys.J. 868 (2018) no.2, L20



Neutrinos from the Galactic Plane
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Figure credit: L. Fusco

IceCube announced the detection of neutrinos 
from the Galactic Plane at 4.5σ (June 2023)

Sample: cascade
events since 

• less atmospheric 
background in the 
down-going Sky
• lower energy 

threshold 
• no need for best 

angular resolution

➡ Science 380, 6652, 1338-1343 (2023)



Individual sources of neutrinos
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Figure credit: IceCube/NASA

Most promising sources:
• AGNs → blazars
• Starburst galaxies
• Galaxy clusters
• Tidal disruption events



Individual sources of neutrinos
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Two ways to detect them:

δ

RA
𝐸

BG

SG: 𝑬"𝜸

flux

time

1) Exploit different expected spatial, energy (and time) 
distribution between signal and backgound: 

BG

SG

BG

SG

IceCube 10 years 
p-value map

ANTARES 15 years 
p-value map

• Look for a signal-like cluster of events 
in each direction of the visible sky OR 
in the direction of promising neutrino 
sources

• Weak points: 
• need for a very high flux to stand 

out from the BG
• Significance killed by trial factors

➡ see talk by M. Spurio



Individual sources of neutrinos
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Two ways to detect them:

2) Exploit real-time multi-messenger approach

Real-time analysis

Alert triggering Online correlation searches



Individual sources of neutrinos
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Blazar TXS 0506+056
➡ Science 361, 147-151 (2018)

➡ Science 361, eaat1378 (2018)

270 TeV muon detected by IceCube on 22 September 2017
in coincidence with flaring blazar

TXS 0506+056 observed by Fermi-LAT and MAGIC (3σ)

Neutrino flare found in 2015 (3.5σ)

13 neutrinos in excess, 
no coincident gamma emission

Lack of concordance picture of the multi-messenger data

Other neutrinos-blazar correlation
Plavin et al ApJ 894 (2020) 101, ApJ 908 (2021) 157, MNRAS 523 (2023) 1799
Buson et al 2022 ApJL 933 L43, arXiv:2305.11263
ANTARES arXiv:2309.06874v1 ➡ see talk by M. Spurio
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Individual sources of neutrinos
Active galaxy NGC 1068 ➡ Science 378, 6619, 538-543 (2022)

CREDITS: NASA, ESA, Alex Filippenko (UC Berkeley), William Sparks (STScI), Luis C. Ho (KIAA-PKU), 
Matthew A Malkan (UCLA), Alessandro Capetti (STScI)

Brightest and one 
of the closest type 2 
Seyfert galaxies

∼80 detected 
neutrino events

Soft best-fit spectrum 
of E$, 𝛾 = 3.2 ± 0.24.2σ post-trial (catalog search)



24

Future neutrino telescope landscape

Operating in full configuration:
o IceCube

Under construction:
o KM3NeT
o Baikal GVD

In planning phase:
o IceCube Gen2
o P-ONE
o TRIDENT

Decommisioned:
o ANTARES



KM3NeT
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KM3NeT/ARCA
36° 16’ N 16 ° 06’ E 

KM3NeT/ORCA
42° 48’ N 06° 02’ EORCA

9 m

ARCA
36 m 

KM3NeT/ORCA
o 18 lines operating, 115 lines foreseen
o 2450 m depth in the Mediterranean Sea
o 40 km offshore from Toulon
o 1 dense building block
o 1/125 km3 instrumented volume
o GeV energies
o Oscillations, mass hierarchy

~210 m ORCA
~1 km ARCA

~200 m
 O

RC
A

~700 m
 A

RC
A

23 m ORCA

90 m ARCA

Building block
115 strings per building block
18 optical modules per string
31 PMTs per OM

KM3NeT/ARCA
o 28 lines operating, 230 lines foreseen
o 3500 m depth in the Mediterranean Sea
o 100 km offshore from Sicily
o 2 sparse building blocks 
o 1 km3 instrumented volume
o 1-10 TeV energy threshold
o High-energy neutrino astronomy

➡ see talk by M. Spurio
➡ Journal of Physics G: Nuclear and 

Particle Physics, 43 (8), 084001, 2016
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KM3NeT
➡ PoS(ICRC2023)1075

o ARCA angular resolution:
o < 0.2° (E >10 TeV) for tracks
o ~ 2° (E >10 TeV) for showers

o ARCA energy resolution:
o 27% for tracks
o <5% for showers

Point-source sensitivity

Diffuse flux sensitivity

NGC 1068 sensitivity

ARCA will be able to:

• Confirm IceCube’s observation of diffuse and Galactic Plane flux
• Characterize the neutrino spectrum and flavor composition

• Look for point-sources of neutrinos with unprecedented angular resolution
• Probe the predicted fluxes for several Galactic sources in a few years of operation
• Enhance the power of multi-messenger follow-up studies



IceCube-Gen2
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89°59′24″S 63°27′11″W

IceCube-Gen2
8 km3

120 strings 
240 m apart

IceCube
1 km3

86 strings 
125 m apart

➡ J.Phys.G 48 (2021) 6, 060501

With respect to IceCube:
• annual rate of observed 

cosmic neutrinos increased 
by a factor of ten

• enlarged energy range
• improved angular 

resolution: 0.2° at 1 PeV
HE νs (TeV-PeV)

IceCube Upgrade
7 extra strings

LE studies, better 
understanding of ice 

optical properties
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IceCube-Gen2
➡ JHEAp 36 (2022) 55-110

Diffuse flux
Steady and transient point-like sources

IceCube-Gen2 will yield about 5 times more 
alerts with improved angular resolution 

compared to IceCube
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Future neutrino telescope landscape
1 km3 

instrumented 
volume

7.5 km3 

instrumented 
volume

> 1 km3 

instrumented 
volume

8 km3 

instrumented 
volume

1 km3 

instrumented 
volume

Entering the high statistics era → high precision studies

• Detailed studies of diffuse flux: energy spectrum, flavour composition
• Firmly establish neutrino sources and their properties
• Detection and characterization of Galactic plane emission with km3-sized Northern telescopes
• Joint spectral measurements combining all operating neutrino might solve the apparent tension
• Improved quality and quantity of neutrino alerts → more multi-messenger events at higher significance



Backup
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Neutrinos and blazars
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ApJ 894 (2020) 101

ApJ 908 (2021) 157

MNRAS 523 (2023) 1799

ANTARES 
neutrinos

Radio 

Gamma 

IceCube neutrinos 

Blazar J0242+1101 multi-messenger flare, 2.9σ 
chance probability 

➡ see talk by M. Spurio
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No correlation with radio-bright 
blazars found in recent IceCube 
search (2023 ApJ 954 75) mitigates 

these findings  

>4.0σ

Radio-bright blazars



Neutrinos and blazars
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Roma-BZCat catalog

Roma-BZCat catalog

• 3561 objects 
• confirmed or highly likely blazars
• no preferred selection toward a particular wavelength or survey strategy
• offers a homogeneous sample of the blazar population

Only northern sky Full-sky

Combined sensitivity >5.0σ

2022 ApJL 933 L43 arXiv:2305.11263
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Tau neutrinos
Tau neutrinos

tau decay length: 50m per PeV

• 7 candidate events found in 10 years of IceCube data
• Consistent with 1:1:1 flavor ratio of astrophysical neutrinos

➡ Eur.Phys.J.C 82 (2022) 11, 1031
➡ PoS(ICRC2023)1122

No atmospheric tau neutrinos at TeV-PeV energies
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Flavour composition
Flavor constraints on the 

cosmic neutrino flux from various 
analyses of IceCube data

• Current constraints compatible with 
several astrophysical production 
scenarios and standard neutrino 
oscillations

• HE neutrino production from the beta-
decay of neutrons strongly disfavoured

→ pion decay

➡ JHEAp 36 (2022) 55-110

→ neutron beta-decay

→ muon-damped case

→ semileptonic decays of charm quarks



Glashow resonance
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First observation of Glashow Resonance
➡ Nature 591, 220-224 (2021)

Glashow event visualization
Credit: IceCube Collaboration

Resonant production of an intermediate 
boson by an antielectron neutrino
interacting with an atomic electron

Resonance energy: Eν = 6.3 PeV



Cross section
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First measurement of HE
neutrino-nucleon cross section

➡ Nature 551 (2017) 596-600
➡ Phys. Rev. Lett. 122, 041101 (2019)
➡ Phys. Rev. D 104, 022001 (2021)


