Neutrino-nucleus
Interactions
Current understanding

Yoshinari Hayato
(Kamioka Obs., ICRR, The Univ. of Tokyo)



Introduction

 The energy of atmospheric neutrino spans from ~100 MeV to TeV.
* The energy of accelerator neutrino spans from ~100 MeV to GeV.
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* Current and next generation atmospheric- and accelerator-based
neutrino oscillation experiments uses nuclear targets, like
scintillator (Carbon), water (Oxygen), Argon, etc.

Detect particles from “neutrino-nucleus scattering”.




Neutrino-nucleon/nucleus interactions above 100 MeV

Charged current quasi-elastic scattering ( CCQE )
v+N->I"+N

| (n,K)
Coherent Single meson productions

v+ A= W)+ A+t ()
Neutrino detectors ~ nucleus target 10°
Various “nuclear effects”
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Introduction

Uncertainty of neutrino-nucleus interactions became one of the
dominant sources of systematic errors.
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We must minimize the uncertainty of VA interactions.



Neutrino-nucleon/nucleus scattering experiments

Cherenkov detectors Scintillator tracking detectors with
(Mineral Oil, Water) Calorimeters, mu tracker (+gas TPC)
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Neutrino-nucleon/nucleus scattering experiments

Cherenkov detectors Scmtlllator tracklng detectors with
(Mln-.--lr\l \AJaa ~ .2\ —~ 1 ' . S TPC)
vinisoc IMmprovements in the experlmental setups
* Higher statistics \
Higher beam intensity 1l
Larger detectors —{

* Higher resolution

Finer granularity
Larger angular acceptance
Lower energy thresholds
Charged pions, protons, ...
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Charged current quasi-elastic scattering vn -1 p
Dominant interaction in a few hundred MeV. vp-oltn
Vi [~ Experiments after the late 1990’s found some
N discrepancies.
W * Fraction of forward going charged leptons in
N X CCQE-like events is smaller than expected.
* # of CCQE-like events is larger than
expected.

Modern neutrino experiments use “nuclear target.”

Initial “nucleon” is bound in the
target nucleus.

Scattered (produced) nucleon is
in the nuclear medium.

“Nuclear effects”




Charged current quasi-elastic scattering vn— 1 p

Dominant interaction in a few hundred MeV. vp-oltn

Experiments after the late 1990’s found some discrepancies.

Possible sources of discrepancies

1) Nuclear modeling (binding effects)
 Changes the allowed kinematical ranges and distributions.

2) Neutrino-nucleon interaction modeling (axial vector form factor)
* Changes the expected event rates and distributions.
 Parameter is determined (mainly) by the old bubble chamber

neutrino experiments in the 70’s and 80’s.
1.276

(1-(q%/M4*))?
It is easy to change M, gives reasonable agreements
with data, and thus, is used as an “effective” parameter.

Axial vector form factor (dipole) F,(q%) = —

3) Missing interactions which are observed as CCQE-like
* Easily change the expected event rates and distributions.



Charged current quasi-elastic interaction vn— 1 p

1) Nuclear modeling (binding effects) vp > ltn

Differential cross-section is large at
small 4-momentum transfer (g?).
Sensitive to various “nuclear”
binding effects.
Outgoing nucleon is also re-
scattered in the nucleus.

@ neutron
R 4

Nucleus **

-

Several models have been proposed and are being tested.
* Fermi-gas
Considering nucleon-nucleon correlations
Spectral function
Considering nuclear medium effects
Relativistic mean-field (RMF) approaches
e Super-scaling model with RMF



Charged current quasi-elastic interaction

2) Neutrino-nucleon interaction modeling
1.276

(1-(q?/M4*))?
Recent lattice QCD (LQCD) results MINERVA measured ds/dQ?
suggest the larger M, from bubble  of v, p - u*n scattering.

Axial vector form factor (dipole) F,(q%) = —

chamber data fit and non-dipole. Enhance in the large Q2.
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Charged current quasi-elastic-like events
3) Missing “CCQE-like” interaction

v N;N, - £ NN,

 Known to exist from the electron scattering
experiments.

* Some models were proposed and implemented

in simulation programs. (But it is difficult to
implement models completely.)

”multi-nlucleon” scattering

—

* It has been difficult to “identify” 3
this interaction experimentally.

 New experiments (detectors)
have started publishing results.

* MicroBooNE did the first
differential cross-section
measurement of 1 u + 2
protons + O pion.
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Single pion production

Charged and neutral single m production
v+N->1I"(v)+N' +n
Dominant interaction around 1 to a few GeV.

 Dominant interaction in medium
energy or wide band v experiments,
like NOVA and DUNE.

* Background when selecting “CCQE”
as a signal, like T2K.

* Background of “proton decay”

o
o)

v cross section / E, (10 cm2/ GeV)
=) o
P 0

o
)

searches 7 P a—
v, Tl A large fraction of pions are produced from
the decay of the intermediate resonance.
W - Re-interaction probability is high.
0 7 * Non-resonant contribution also exists.

Resonance P Complicated process



Single pion production
Charged and neutral single m production
v+N->1I"(v)+N' +n
High probabilities of pion interactions
in the nucleus and secondary interaction in the detector

Inelastic scattering Charge Exchange Absorption

(Additional pions may be produced.)
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Single pion production

Charged and neutral single m production
v+N->1I"(v)+N' +n
Discrepancies between the observation and

simulation results

Suppression in small g% region
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Single pion production
Charged and neutral single m production
v+N->1I"(v)+N' +n
Discrepancies between the observation and
simulation results

Low-momentum charged pion Low-momentum lepton + pion
events excess in the data events excess in the data
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Single pion production
Charged and neutral single m production
v+N->1I"(v)+N' +n

Discrepancies between the observation and
simulation results

Larger # of charged pions in the backward direction.
(v + Fe@Ninja) (v + Fe@Ninja)

15

Ninja

PRD 106, 032016 (2022) 30

20

‘ SRR
10

Number of charged pions
Number of charged pions

0 20 40 60 80 100
Charged pion angle W



Single pion production

Charged and neutral single m production
v+N->1I"(v)+N' +n

Nuclear dependence
Primary v interaction
Nuclear binding effects
Final state interactions

v' MINERVA reported the
nuclear dependence of
differential cross-sections.

v" High precision and high
statistics Carbon and Argon
data sets will be available
from various experiments.
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Single pion production

Charged and neutral single m production
v+N->1I"(v)+N' +n

Primary neutrino-nucleon interaction models in simulation programs
Rein and Sehgal model
e Relativistic harmonic oscillator quark model (FKR)
e Existing resonances and their interferences.
e Extensively used because it is straightforward in implementing the
model and the reference code was provided by authors.
MK model (M. Kabirnezhad)
e Various enhancement introduced to the original Rein-Sehgal model
e Graczyk-Sobczyk form-factors, HNV model based non-resonant
contribution, fit to the electron scattering data sets.
Dynamical coupled-channels model (Nakamura, Sato et al.)
* Interferences are under control
* Coupling strengths are determined by experimental data analysis
Adler-Rarita-Schwinger formalization
* Treat final hadronic state (3/2-spin resonance state) as Rarita-
Schwinger field. (Applicable to A)



Shallow and Deep Inelastic scattering (SIS/DIS)

Charged and neutral SIS & DIS
v+ N->1"(v)+ N+ X (X = hadrons)

Dominant interaction above a few GeV. Vi F
Described as neutrino-quark interactions.

e Rather simple cross-section equations
with parton distribution functions. N Hadrons

* Parton distribution functions (PDF) are
extracted from various high energy

experiments.
Issues

Existing PDF does not cover the
entire kinematic regions as-is.
(Covers large g% and W regions.)
No nuclear dependences are considered. = (GeY)
mm) Careful treatments (corrections) are required to
for the interactions from a few to 10 GeV.

W+

14

v cross section / E, (10% cm?/ GeV
o
o

o




Shallow and Deep Inelastic scattering (SIS/DIS)

Charged and neutral SIS / DIS

v+ N->1"(v)+ N + X (X = hadrons)

Dominant interaction above a few GeV.

Model for “low energy” SIS / DIS
Prescriptions by Bodek and Yang are
commonly used. Their model provide
the way to extend the PDF to low g2,
low W region. (Model parameters are
extracted by fitting various data.)
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Shallow and Deep Inelastic scattering (SIS/DIS)

Charged and neutral SIS / DIS
v+ N->1"(v)+ N + X (X = hadrons)

MINERVA experiment published various results,
both lepton momenta and hadron energies.
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Shallow and Deep Inelastic scattering (SIS/DIS)

Charged and neutral SIS & DIS
v+ N->1"(v)+ N + X (X = hadrons)
\Y [
MINERVA experiment also published
nuclear dependence of differential cross-sections W+
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Neutrons from neutrino interactions

Neutron provides useful information
to improve various physics sensitivities

* Neutrino / anti-neutrino discrimination
* |dentification of supernova(SN) diffuse v signal
V.+p—oet+n
* Accelerator and atmospheric neutrino signal separation
v+n-ol" +porvy+p—Ilt+n

* Interaction channel discrimination
e Pointing accuracy improvement in SN burst.
V,+p—oet+norv+e »v+e

* Nucleon decay background rejection
* Nucleon decay itself does not produce neutron, but
background atmospheric neutrino interactions do.



Neutrons from neutrino interactions

Neutron provides useful information
to improve various physics sensitivities

Various interactions produce neutrons. v
* Nuclear de-excitation after primary neutrino

emit neutron),
* Final state interactions of hadrons in nucleus,
and \%
e Secondary interactions of hadrons in nucleus.
(meson-nucleus scattering, m~ absorption,
nucleon-nucleon scatterings etc.)

All these channel must be understood at certain level.



Neutrino-nucleus interaction simulation programs

Super-Kamiokande loaded Gd to the water.
(In 2020, concentration was 0.01% and now 0.03 % from 2022.)

e Gd captures neutron V. "o
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https://doi.org/10.1016/j.nima.2021.166248
https://doi.org/10.1016/j.nima.2021.166248

Neutrino-nucleus event generators
(Neutrino-nucleus interaction simulation programs)

Simulation programs play critical roles in neutrino experiments.

Physics process simulation

* Neutrino-nucleon/nucleus interactions
Various initial state nuclear (binding) effects

* Final state interactions of hadrons

* Treatments of the remaining nucleus




Neutrino-nucleus event generators
(Neutrino-nucleus interaction simulation programs)

|

Scintillator2

Handlings of neutrino detector geometry
Appropriate treatment of interaction in
each detector (target medium).

Neutrino detectors have complex
structures and contain various kinds
of material.

Handlings of neutrino (beam) flux
Position dependence of the accelerator
neutrino direction.

The correct location and geometry
of detectors must be considered.

Scintillatorl

There are various detector geometry
data formats, and the neutrino beam
flux data formats.

Decay tunnel




Neutrino-nucleus event generators
(Neutrino-nucleus interaction simulation programs)

Several generators are available in the market
Widely used in the experiments
GIBUU, GENIE, NEUT and NuWro
New generator
Achilles  Fully factorized and highly modular design

Low energy dedicated (E, < 100MeV, Argon target)
MARLEY (Model of Argon Reaction Low Energy Yields)

Nuclear de-excitation simulator
NucDeex Used with the any event generators
Currently supports 12C and 0.



Future directions of neutrino event generators

It is useful to compare the outputs from the different neutrino-
nucleus interaction simulation program outputs.

However, it has been difficult to “compare” because
* the neutrino beam flux data formats are different and
* different neutrino-nucleus interaction simulation programs
have been using different data output formats.

* “NUISANCE” tries to solve this issue by making a framework to
compare outputs from different simulation programs, but it is
not an easy task to maintain.

e Attempt to define the common data format (NuHepMC) based
on the HepMC (HepMC3) to make direct comparisons easier.

e Also, the discussion has started to realize the common
“neutrino flux driver” to interchange the simulation programs.



Summary and prospects

Precise understanding of neutrino-nucleus interactions is
essential to archive the physics goals of current, near-future
and future neutrino oscillation and nucleon decay
experiments.

Unfortunately, current our understanding turns out to be not
precise enough to satisfy the requirements in the future
experiments.

There are various unsolved problems remaining even in the
simplest quasi-elastic scattering (vn = [~ p,vp — [t n).
More difficult situation for more complicated interactions, like
single meson productions, shallow/deep inelastic scatterings
and hadron re-interactions in the nucleus or in the detector.
Neutron emission from various processes in the detector
became crucial subject to be studied.

Nuclear de-excitation is another interesting topic to be studied.



Summary and prospects

* Several new neutrino scattering experiments have started
providing new information (MicroBooNE, MINERVA, Ninja,
NOVA-ND, T2K-ND280) and further information will be
published in coming years from existing and new
detectors/experiments (ICARUS, SBND, T2K-ND280 upgraded.)

* Collaboration with electron scattering community has been
started and this will also give useful insights.

* Lattice QCD gives interesting new information and will be
interesting to compare with the neutrino scattering data.
 Developments of new models by theorists and collaboration
with theorists are expanding. These activities have to be

accelerated further.



Summary and prospects

 Real and simulated data comparisons will be more crucial in
evaluating the models and their implementation in simulation
program libraries.

Efforts to define the “community standard” particle data
formats to realize the direct comparisons of simulation
outputs have been started. This also includes the work to
improve the interoperability of the simulation software in
different beamline (accelerator). This work has to be
accelerated.
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