
Improving electrons and photons ATLAS data to 
simulation agreement using machine learning 

techniques

Relatore: prof. Leonardo Carminati

Correlatore: dott. Ruggero Turra

Candidato: Tommaso Cozzi

Matricola: 944205

Discussione di Laurea
Tesi Triennale in Scienze e Tecnologie Fisiche

14 Dicembre 2022



Tommaso Cozzi - Tesi Triennale, 14/12/2022 2

ATLAS layout

• Cylindrical symmetry, frame of reference:
𝑧, 𝜙, 𝜂 where

η = − ln tan
𝜃

2

• Inner Detector (ID): measures the direction and
momentum of charged particles, detects
secondary vertices.

• Calorimeter system: absorbs the incoming
particles, the energy released in the detector is
transformed in measurable signal.
o Electromagnetic calorimeter (EMC):
o Hadronic calorimeter (HC)

• Muon Spectrometer: measures the muon
trajectory and momentum.

• Magnet system:
o Solenoid up to 𝐵 = 2 𝑇
o Toroids (2 end-caps, 1 barrel) up to 𝐵 =

3.5 𝑇

The ATLAS detector
• ATLAS performs precision measurements of Standard Model processes and searches for new physics.
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Particle shower in a calorimeter

• The incident particle interacts with the detector
material and produces showers of secondary
particles with progressively degraded energy.

• A photon appears as a cluster of energies
measured in topologically connected cells.

Calorimeters

• The EMC measures mainly electrons and photons,
while the HC measures jets of hadrons.

• Physics analyses make heavy use of accurate Monte
Carlo simulations of the detector response.

• Usually achieved by exploiting sophisticated Monte
Carlo codes (GEANT4).

• A residual difference is usually observed between
data and simulations.
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Shower shapes

Shower shapes description.

• The shower shapes are the observables that describe the shower developement in the calorimeter allowing
to distinguish between photons and hadrons.

• A photon is defined as a cluster of energy fulfilling specific requirements on 9 shower shapes.
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Shower shapes

Data, MC with and without FF distributions
for the Rhad shower shape

• In the case of photons, to account for the differences between
data and simulations, correction factors called ”Fudge Factors”
(FF) have been introduced.

• The FFs correct each shower shape separately.

• The purpose of this thesis is to calculate a unique weight per
event that corrects all the shower shapes.

• The work consists in three steps:
o Firstly, find the weight training a Boosted Decision Tree to

discriminate MC and data events in a sample of photons
𝑍 → ℓℓ𝛾 candidates;

o Evaluate the amount of background in the data sample;
o Finally, perform a new ‘background aware’ training, adding

background events with a negative weight to data.



• The training dataset contains the input variables xi (with its multiple features xij) and the correct output
(yi

true). The input xi has to be mapped into a target output yi
prediction with a fixed model.

• The predictive performance of the model is evaluated with the Objective Function:

𝑂𝑏𝑗 ϑ = ℒ ϑ + Ω(ϑ)

• A Decision Tree is a flowchart structure where the internal nodes represent a condition on a feature of the
input variables.

• Gradient Boosting: Trees are added iteratively, choosing, at each step, the Tree that optimizes the Objective
Function.
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Machine learning techniques
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The radiative Z boson decay

Final State Radiation. A photon is radiated by a 
lepton after the Z boson decay.

Z+jet production. A gluon is radiated by the interacting quark
and it will give rise to an hadronic jet. 

Initial State Radiation. A photon is radiated by 
the interacting quark quark.

• Need to extract a pure sample of photons in data without using the photon identification criteria.

• To increase the purity of the photon sample 
focus on FSR only.

• Only events with 𝜇
±

or 𝑒
±

in the final state 
are considered.
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Event selection

Selections:
• 80 GeV < 𝑚ℓℓ𝛾 < 100 GeV
• 𝑚ℓℓ < 83 GeV
• 𝑝𝑇

𝛾 > 10 GeV

• Δ𝑅 𝛾, ℓ1,2 > 0.4

Selection 𝒁 → 𝒆𝒆𝜸 𝒁 → 𝝁𝝁𝜸

Total events 2912988 4242106

80GeV < 𝑚ℓℓ𝛾 < 100GeV 845164 1264823

𝑚ℓℓ < 83GeV 507224 794922

𝑝𝑇
𝛾 > 10GeV 373836 591917

Δ𝑅 𝛾, ℓ1,2 > 0.4 297835 474008

𝑚
ℓ
ℓ
[𝐺
𝑒𝑉

]
𝑚

ℓ
ℓ
[𝐺
𝑒𝑉

]

Data, 𝑍 → 𝑒𝑒γ

Data, 𝑍 → 𝜇𝜇γ

𝑚ℓℓ𝛾 [𝐺𝑒𝑉]

𝑚ℓℓ𝛾 [𝐺𝑒𝑉]
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• BDT is trained to distinguish between
photon candidates in MC and data 𝑍 →
ℓℓ𝛾 samples.

• All the shower shapes have been used as
input variables together with 𝜂𝛾.

• The early stopping has been set to 5
iterations.

• From the algorithm prediction 𝑦𝑝𝑟𝑒𝑑 it’s
possible to obtain the weight to apply to the 
MC samples. 

𝑦𝑝𝑟𝑒𝑑 = 𝑃 𝑑𝑎𝑡𝑎 𝑥

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐵𝐷𝑇 =
𝑃[𝑑𝑎𝑡𝑎|𝑥]

𝑃[𝑀𝐶|𝑥]
=

𝑦𝑝𝑟𝑒𝑑

1 − 𝑦𝑝𝑟𝑒𝑑

BDT loss and weightsBDT distribution.

BDT
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MC reweighting
Rhad1 and ws,tot shower shapes
are shown. Grey histogram
represents the data, yellow
and green histograms are the
official MC, while the red one
is the reweighted MC. Left
plots are in linear scale, qhile
right ones are in logarithmic
scale on y-axis.

In backup the other
shower shapes are 
collected.
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Efficiency

Tight photon identification efficiency as functions of 𝜂𝛾 and 𝑝𝑇
𝛾. Black line is the data efficiency, 

yellow and green are the official MC efficiency and the red one is the reweighted MC efficiency.

• The BDT based weight makes the MC efficiency match the data efficiency.
• Non negligibile background contribution in the data sample (lower efficiency).

• Efficiency: 𝜖 =
𝑁

𝑝𝐼𝐷

𝑁
𝑡𝑜𝑡

where NpID=number of photons fulfilling the selection, Ntot=total number of photons.
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Background subtraction

• Background template: MC 𝑍ℓℓ + 𝑗 sample
• Signal template: MC 𝑍 → ℓℓ𝛾 sample
• Data: data 𝑍 → ℓℓ𝛾 sample

• Model: 𝑃𝑡𝑜𝑡 = 𝑛𝑠𝑖𝑔 ⋅ 𝑃𝑠𝑖𝑔 + 𝑛𝑏𝑘𝑔 ⋅ 𝑃𝑏𝑘𝑔

𝑍 → 𝑒𝑒𝛾

𝑍 → 𝜇𝜇𝛾

Fit to data of the model (red line).

Decay mode 𝐧𝐬𝐢𝐠 𝐧𝐛𝐤𝐠

𝑍 → 𝑒𝑒γ 190388.36 234125.54

𝑍 → 𝜇𝜇𝛾 317966.18 365646.82

𝑊𝑏𝑘𝑔 = −
𝑤𝑗

σ𝑗𝑤𝑗

⋅ 𝑛𝑏𝑘𝑔

• 𝑛𝑏𝑘𝑔 𝑍ℓℓ + 𝑗 MC events are added to the data 
sample with a negative weight:
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Background aware MC reweighting
Rhad and ws,tot shower shapes

are shown. Grey histogram
represents the data, yellow

and green histograms are the 
official MC, while the red one 

is the reweighted MC . Left 
plots are in linear scale, qhile
right ones are in logarithmic

scale on y-axis.

In backup the other
shower shapes are 
collected.
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Background aware MC reweighting: efficiency

Tight photon identification efficiency as functions of 𝜂𝛾 and 𝑝𝑇
𝛾. Blue line is the data efficiency, yellow

and green are the official MC efficiency and the light blue one is the reweighted MC efficiency.

• The efficiency in data after the background subtraction is higher (as expected).
• Data and reweighted MC agreement is not fully stisfying yet.
• The reweighted MC efficiency describes the data efficiency better than the official MC only at low 𝑝𝑇

𝛾 and 𝜂𝛾 .
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Conclusions

• In this thesis a new approach to simulation correction has been introduced using a BDT algorithm trained to
distinguish data from MC events in a sample of photons from 𝑍 → ℓℓ𝛾 decay.

o The BDT based weight improves the agreement between data and simulation in the shower shape
variables and makes their efficiencies closer.

o The data sample is contaminated by 𝑍ℓℓ + 𝑗 background and these weights can not be applied directly
to 𝑍 → ℓℓ𝛾 MC samples.

• The amount of background has been evaluated from a ‘signal + background’ fit to data.

o Estimated purity: ∼ 46.5% in the muonic channel, and ∼ 44.8% in the electronic channel.

• A new BDT has been trained adding MC background events with negative weights to the data sample.

o The new weight doesn’t improve the agreement between data and simulations.

• The method is promising although it has to be investigated further to improve its performance.
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Thank you for your attention
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Backup slides
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Event selection

Invariant masses of the two lepton (y-axis) and of two leptons and a photon (x-axis). The yellow spots 
represent the ISR and the FSR.
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ℓ
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𝑒𝑉

]

𝑚
ℓ
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[𝐺
𝑒𝑉

]

𝑚
ℓ
ℓ
[𝐺
𝑒𝑉
]

𝑚
ℓ
ℓ
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]

𝑚ℓℓ𝛾 [𝐺𝑒𝑉] 𝑚ℓℓ𝛾 [𝐺𝑒𝑉]

𝑚ℓℓ𝛾 [𝐺𝑒𝑉] 𝑚ℓℓ𝛾 [𝐺𝑒𝑉]

Data, 𝑍 → 𝜇𝜇γ

Data, 𝑍 → 𝑒𝑒γ

MC, 𝑍 → 𝜇𝜇γ

MC, 𝑍 → 𝑒𝑒γ
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Event selection

𝑍 → 𝑒𝑒𝛾 𝑍 → 𝑒𝑒𝛾

Photon transverse momentum and photon pseudorapidity distributions in data and MC 𝑍 →
𝑒𝑒𝛾 samples after the selections.
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Event selection
Invariant mass 𝑚ℓℓ𝛾 in the 
𝑍ℓℓ + 𝑗 sample.

𝑍 → 𝑒𝑒𝛾

𝑍 → 𝑒𝑒𝛾

𝑍 → 𝑒𝑒𝛾

No selections

Truth type selection

All selections
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MC reweighting
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Background aware MC reweighting
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Background subtraction
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LightGBM

• Light Gradient Boosting Machine (LightGBM) is the machine learning
implementations used for this work. It is based on the Gradient Boosting
Decision Tree model but it operates with a leaf-wise growth.

Leaf-wise growth.
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Electron and photon reconstruction

• Electron: object built from
energy deposit in calorimeter
and a matched track.

• Converted photon (left):
supercluster matched to a
conversion vertex.

• Unconverted photon (right):
supercluster with no associated
tracks or conversion vertices.

Shower
shapes



Tommaso Cozzi - Tesi Triennale, 14/12/2022 26

Electron and photon energy energy calibration
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Electron identification

• It’s based on a likelihood discrimination to separate
isolated electrons from photon conversion, hadron
misidentification and heavy flavor decays.

• It uses variables measured in the ID and in the
calorimeters.

• It gives better background rejection for a given signal
efficiency than a ‘cut-based’ algorithm.

• Measured in data with ‘tag and probe’ method: 𝐽/Ψ
(low ET) and 𝑍 (high ET) decays to electrons.

• Three working points are defined:
o Loose (efficiency ∼ 93%)
o Medium (efficiency ∼ 88%)
o Tight (efficiency ∼ 80%)

The electron identification efficiency in 𝑍 → 𝑒𝑒 events in data for 
the Loose, Medium and Tight operating points.
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Photon identification

Loose photon identification efficiency, for converted 
photons computed with three different methods.

• The purpose is to select prompt photons and reject
the background (e.g. 𝜋0 → 𝛾𝛾).

• 9 discriminating varibles based on energy in cells of
electromagnetic and headronic calorimeters are
used.

• Three methods:
o Radiative Z
o Matrix method
o Electron extrapolation from 𝑍 → 𝑒𝑒

• Loose and Medium: discriminating variables in the
HCalo and in the EMCalo middle layer; used by
triggers.

• Tight: tighter cuts on discriminating variables; uses
also EMCalo strip layer; used for offline analysis.
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Electron and photon isolation

• Eliminates the remaing background particles misidentified as electrons or photons.
• Remains high energy jets that can be rejected requiring low hadronic activity around the 

candidate.
• Two variables are defined: ET

coneXX and pT
coneXX which are calculated in a cone centered around

the candidate cluster with a radius Δ𝑅 = 𝑋𝑋/100.

• Three standard selections are defined imposing different thresholds on ET
coneXX and pT

coneXX: 
Loose, Tight, Calorimeter-only Tight.
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Efficiency

• In this work the Tight photon identification efficiency is used to assess the goodness of the reweighting
applied on the MC samples.

• The efficiceny is computed as:

𝜖 =
𝑁𝑝𝐼𝐷

𝑁𝑡𝑜𝑡

• In the case of the background subtraction, the number of signal events is given by the fit algorithm.
• The error are computed as:

𝜎𝑁 = σ𝑁2

• In the case of the background subtraction, the error on N is given by the fit algorithm.
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