Search for dark photon from a heavy Higgs Boson decay in events with a photon and missing transverse momentum in *pp* collisions at a center-of-mass energy of 13 TeV with the ATLAS detector

Matilde Uboldi Relatori:

Prof. Marcello Fanti

Dott.ssa Federica Piazza

Correlatore:

Dott.ssa Silvia Resconi

14 december 2022

The Standard Model (SM)

- Description of elementary particles and their interactions:
 - Fermions: constituents of matter (quarks and leptons)
 - Bosons: gauge bosons (interactions mediators) and Higgs boson
- Accounts only for the 5% of the matter-energy content of the universe

The Standard Model (SM)

- Description of elementary particles and their interactions:
 - Fermions: constituents of matter (quarks and leptons)
 - Bosons: gauge bosons (force mediators) and Higgs boson
- Accounts only for the 5% of the matter-energy content of the universe

```
Higgs portal
```

- Dark or Hidden Sector:
 - Dark matter candidates
 - Dark gauge bosons (e.g. dark photon γ_d)
 - Potentially observable decay $H \longrightarrow \gamma \gamma_d$

The mono-photon signature

Mono-photon signature:

- Production of a weakly- or non-interacting particle (e.g. the dark photon)
- photon + E_{T}^{miss} in the final state:

2000

- Momentum conservation: in the plane transverse to the beam axis, the momenta of all particles in the final state should sum to zero
 - Imbalance in the transverse momentum

$$\vec{E_T}^{miss} = -\sum_{e} \vec{p_T}^{e} - \sum_{\gamma} \vec{p_T}^{\gamma} - \sum_{\mu} \vec{p_T}^{\mu} - \sum_{\tau} \vec{p_T}^{\tau} - \sum_{jet} \vec{p_T}^{jet} - \sum_{soft} \vec{p_T}^{soft}$$

reconstructed objects

- Search for dark matter performed by ATLAS at the LHC, published using the full Run 2 dataset (2015-2018), corresponding to an integrated luminosity $L = 139 \text{ fb}^{-1}$
- Mono-photon signature: photon + E_T^{miss} in the final state
- Definition of Signal Regions (SRs):
 - 1. E_T^{miss} selection: inclusive SRs and exclusive SRs
 - 2. Leading photon with pT > 150 GeV
 - 3. DeltaPhi(photon, E_T^{miss}) > 0.4
 - 4. E_T^{miss} significance > 8.5
 - 5. At most 1 jet with DeltaPhi(jet, E_T^{miss}) > 0.4
 - 6. No electron and no muon

- Search for dark matter performed by ATLAS at the LHC, published using the full Run 2 dataset (2015-2018), corresponding to an integrated luminosity $L = 139 \text{ fb}^{-1}$
- Mono-photon signature: photon + E_T^{miss} in the final state
- Definition of Signal Regions (SRs):
 - 1. E_T^{miss} selection: inclusive SRs and exclusive SRs
 - 2. Leading photon with pT > 150 GeV
 - 3. DeltaPhi(photon, E_T^{miss}) > 0.4
 - 4. E_T^{miss} significance > 8.5
 - 5. At most 1 jet with DeltaPhi(jet, E_T^{miss}) > 0.4
 - 6. No electron and no muon

- Search for dark matter performed by ATLAS at the LHC, published using the full Run 2 dataset (2015-2018), corresponding to an integrated luminosity $L = 139 \text{ fb}^{-1}$
- Mono-photon signature: photon + E_T^{miss} in the final state
- Definition of Signal Regions (SRs):
 - 1. E_T^{miss} selection: inclusive SRs and exclusive SRs
 - 2. Leading photon with pT > 150 GeV
 - 3. DeltaPhi(photon, E_T^{miss}) > 0.4
 - 4. E_T^{miss} significance > 8.5
 - 5. At most 1 jet with DeltaPhi(jet, E_T^{miss}) > 0.4
 - 6. No electron and no muon

- Search for dark matter performed by ATLAS at the LHC, published using the full Run 2 dataset (2015-2018), corresponding to an integrated luminosity $L = 139 \text{ fb}^{-1}$
- Mono-photon signature: photon + E_{T}^{miss} in the final state
- Definition of Control Regions (SRs):
 - Complementary to SRs, defined inverting one selection criteria
 - PhJetCR: γ +jet
 - 1MuCR: γ +W(\rightarrow lv)
 - 2MuCR / 2EleCR: γ +Z($\rightarrow \nu\nu$), γ +Z($\rightarrow ll$)
- Simultaneous likelihood fit in CRs to extract normalization factors k_{yjet}, k_w, k_z and propagate them in SRs

- Simultaneous shape-fit in CRs and SRs:
 - Exclusive SRs and last inclusive (SRI4)
 - Better reproduce the E_T^{miss} distribution
- No significant event excess was observed in the SRs
 - Exclusion limits in models predicting weakly interacting dark-matter candidates
 - Model-independent limits are also provided for possible reinterpretation in other theoretical models

Reinterpretation

Reinterpretation of the mono-photon analysis in searches for dark photon

- Higgs boson decay into a photon and a dark photon: $H \rightarrow \gamma \gamma_d$
 - Beyond SM heavy **Higgs boson** (due to mono-photon selection)

Reinterpretation

Reinterpretation of the mono-photon analysis in searches for dark photon

- Higgs boson decay into a photon and a dark photon: $H \rightarrow \gamma \gamma_d$
 - Beyond SM heavy **Higgs boson** (due to mono-photon selection)
 - Produced via guon gluon fusion (ggF) and vector boson fusion (VBF)

First reinterpretation approach

- From mono-photon model-independent limits
- 8 ggF Higgs MC truth-samples:
 - The detector response is not take into account
 - 400, 800, 1000, 1500, 2400, 3000, 4000, 5000 GeV
 - Statistics of N = 10000 events each

First reinterpretation approach

- From monophoton model-independent limits
- 8 ggF Higgs MC truth-samples:
 - The detector response is not take into account
 - 400, 800, 1000, 1500, 2400, 3000, 4000, 5000 GeV
 - Statistics of N = 10000 events each

• The fiducial acceptance is the fraction of events that pass the selection: A_{fid}

$$A_{fid} = \frac{N_{sel}}{N}$$

Model-independent limits

- Fiducial upper limits on xsec x A:
 - Do not depend on the signal model
 - provided by the mono-photon analysis
- Can be exploited to estimate first exclusion limits dividing by the fiducial acceptance: $\sigma_{lim} = \frac{\sigma_{fid}}{A_{fid}}$

	$E_T^{miss} > 200 \mathrm{GeV}$	$E_T^{miss} > 250{\rm GeV}$	$E_T^{miss} > 300{\rm GeV}$	$E_T^{miss} > 375 \mathrm{GeV}$
m_{H}	A_{fid}	A_{fid}	A_{fid}	A_{fid}
$400 {\rm GeV}$	0.155 ± 0.004	0.007 ± 0.001	0.0004 ± 0.0002	_
$800~{\rm GeV}$	0.56 ± 0.01	0.51 ± 0.01	0.44 ± 0.01	0.23 ± 0.01
$1 { m TeV}$	0.55 ± 0.01	0.52 ± 0.01	0.48 ± 0.01	0.40 ± 0.01
$1.5 { m ~TeV}$	0.49 ± 0.01	0.48 ± 0.01	0.47 ± 0.01	0.45 ± 0.01
$2.4 { m ~TeV}$	0.45 ± 0.01	0.45 ± 0.01	0.45 ± 0.01	0.44 ± 0.01
$3 { m TeV}$	0.42 ± 0.01	0.42 ± 0.01	0.42 ± 0.01	0.42 ± 0.01
$4 { m TeV}$	0.40 ± 0.01	0.40 ± 0.01	0.40 ± 0.01	0.40 ± 0.01
$5 { m TeV}$	0.40 ± 0.01	0.40 ± 0.01	0.40 ± 0.01	0.40 ± 0.01

Signal channel	$\langle \sigma \rangle_{\mathrm obs}^{95}$ [fb]	$\langle \sigma \rangle_{\mathrm{ex}p}^{95}$ [fb]
$\overline{E_{\mathrm{T}}^{\mathrm{miss}} > 200 \mathrm{~GeV}}$	3.20	$3.69^{+1.41}_{-1.02}$
$E_{\rm T}^{\rm miss} > 250 { m ~GeV}$	1.91	$2.26^{+0.85}_{-0.62}$
$E_{\rm T}^{\rm miss} > 300 { m GeV}$	1.26	$1.46^{+0.55}_{-0.40}$
$E_{\rm T}^{\rm miss}$ > 375 GeV	0.78	$0.93^{+0.34}_{-0.25}$
$200 < E_{\rm T}^{\rm miss} < 250 { m ~GeV}$	2.30	$2.60^{+0.98}_{-0.71}$
$250 < E_{\rm T}^{\rm miss} < 300 { m GeV}$	1.37	$1.52^{+0.57}_{-0.41}$
$300 < E_{\rm T}^{\rm miss} < 375 { m GeV}$	1.09	$1.13^{+0.43}_{-0.31}$

https://cds.cern.ch/record/2689095/files/ATL-COM-PHYS-2019-1162.pdf

Limit plot for $E_T^{miss} > 200 \text{ GeV}$

- Limit plot at 95% CL (Confidence Level):
 - Observed upper limit (solid line)
 - Expected upper limit (dashed line)
 - 68% confidence band (yellow band)
- A BR = 100% is used for theoretical prediction
- For high masses (m_H > 1500 GeV) the upper limits exceed the theoretical prediction
 - Non-sensitivity region of the mono-photon analysis

Second reinterpretation approach

- Same simultaneous fit strategy of the mono-photon analysis
 - Same number of events observed in the CRs and simulated in SRs /CRs for each background process
 - Dark photon signal
 - Signal uncertainties are taken into account
- 8 ggF and VBF Higgs reconstructed samples:
 - The detector response is simulated
 - 400, 600, 800, 1000, 1500, 2000, 2500, 3000 GeV
 - Statistics of N = 10000 events each
- Mono-photon selection

ggF comparison

- Two strategies are adopted in inclusive SRs for the ggF production channel
- The compared results are shown for SRI1 (E_T^{miss} > 200 GeV)
- A BR = 5% is assumed for theoretical prediction, due to present constraints

ggF and VBF shape-fit

- The shape fit provides best limits, as it exploits the E_T^{miss} information at best
- The compared results are shown for both production processes (ggF and VBF)
- A BR = 5% is assumed for theoretical prediction, due to present constraints

95% CL Limits	$\sigma_{ggF} imes BR$		$\sigma_{VBF} imes BR$		
m_H	Obs. (fb)	Exp. $^{+1\sigma}_{-1\sigma}$ (fb)	Obs. (fb)	Exp. $^{+1\sigma}_{-1\sigma}$ (fb)	
$400~{\rm GeV}$	23.3	$27.1 \ ^{+12.5}_{-8.03}$	44.1	$51.6 \ ^{+22.8}_{-15.4}$	
$600 { m GeV}$	5.08	$5.72 \ ^{+2.6}_{-1.65}$	9.33	$10.45 \ _{-2.97}^{+4.32}$	
$800 { m GeV}$	3.04	$3.56 \ ^{+1.63}_{-1.06}$	4.55	$5.29 \ ^{+2.16}_{-1.47}$	
$1 { m TeV}$	1.93	$2.30 \ ^{+1.02}_{-0.68}$	2.60	$3.08 \ ^{+1.21}_{-0.85}$	
$1.5 { m ~TeV}$	1.73	$2.04 {}^{+0.93}_{-0.60}$	1.86	$2.18 \ _{-0.59}^{+0.86}$	
$2 { m TeV}$	1.74	$2.05 \ ^{+0.88}_{-0.60}$	1.64	$1.92 \ {}^{+0.78}_{-0.52}$	
$2.5~{\rm TeV}$	2.06	$2.44 \ _{-0.77}^{+1.24}$	1.48	$1.73 \ _{-0.49}^{+0.70}$	
3 TeV	2.10	$2.48 \ _{-0.75}^{+1.28}$	1.42	$1.66 \ ^{+0.69}_{-0.46}$	

Combined limits

- Combined exclusion limits are obtained from the shape-fit
- Two production processes are combined proportionally to their relative theoretical cross-section
- A BR = 5% is assumed for theoretical prediction, due to present constraints

95% CL Limits	$\sigma_{ggF} \times BR$		$\sigma_{VBF} imes BR$		$\sigma_{(ggF+VBF)} \times BR$	
m_{H}	Obs. (fb)	Exp. $^{+1\sigma}_{-1\sigma}$ (fb)	Obs. (fb)	Exp. $^{+1\sigma}_{-1\sigma}$ (fb)	Obs. (fb)	Exp. $^{+1\sigma}_{-1\sigma}$ (fb)
$400~{\rm GeV}$	23.3	$27.1 \ ^{+12.5}_{-8.03}$	44.1	$51.6 \ ^{+22.8}_{-15.4}$	24.2	$28.1 \ ^{+12.7}_{-8.30}$
$600 { m GeV}$	5.08	$5.72 \ ^{+2.6}_{-1.65}$	9.33	$10.45 \ _{-2.97}^{+4.32}$	5.45	$6.10 \ _{-1.80}^{+2.66}$
$800 { m GeV}$	3.04	$3.56 \ ^{+1.63}_{-1.06}$	4.55	$5.29 \ ^{+2.16}_{-1.47}$	3.31	$3.86 \ ^{+1.69}_{-1.13}$
$1 { m TeV}$	1.93	$2.30 \ ^{+1.02}_{-0.68}$	2.60	$3.08 \ ^{+1.21}_{-0.85}$	2.14	$2.52 \ ^{+1.04}_{-0.71}$
$1.5 { m ~TeV}$	1.73	$2.04 {}^{+0.93}_{-0.60}$	1.86	$2.18 \ ^{+0.86}_{-0.59}$	1.79	$2.09 {}^{+0.84}_{-0.57}$
$2 { m TeV}$	1.74	$2.05 \ ^{+0.88}_{-0.60}$	1.64	$1.92 \ _{-0.52}^{+0.78}$	1.64	$1.93 \ _{-0.54}^{+0.76}$
$2.5 { m ~TeV}$	2.06	$2.44 \ _{-0.77}^{+1.24}$	1.48	$1.73 \ _{-0.49}^{+0.70}$	1.50	$1.75 \ _{-0.48}^{+0.71}$
3 TeV	2.10	$2.48 \ ^{+1.28}_{-0.75}$	1.42	$1.66 \ ^{+0.69}_{-0.46}$	1.44	$1.68 \ ^{+0.69}_{-0.46}$

Conclusions

- Reinterpretation of mono-photon results in the context of dark photon searches, in order to obtain exclusion limits on cross section times branching ratio of the process $H \rightarrow \gamma \gamma_d$
- Heavy Higgs boson mass range: 400 GeV 3000 GeV
- Two approaches adopted for the ggF production channel:
 - Using model-indipendent limits of the mono-photon analysis
 - Performing the model-dependent fit
- Best exclusion limits combining **ggF** and **VBF** channels, compatible with other ATLAS results
- Results will be included in an ATLAS publication soon!

Thank you for your attention!

Coordinate system

- Origin in the interaction point IP
 - z-axis: along the beam direction
 - x-axis: towards ring center
 - y-axis: upwards
- Polar angle θ on the y-z plane
- Azimuthal angle ϕ on the x-y plane (transverse plane)
- Pseudorapidity: $\eta = -ln \tan \frac{\theta}{2}$
- angular separation: $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

Photon reconstruction

- Topo-clusters:
 - clusters of energy deposits in connected cells of the EM
 - Matched to Inner Detector (ID) tracks and to conversion vertices
- Photon candidates:
 - converted photons (energy clusters matched to a conversion vertex)
 - unconverted photons (energy clusters that do not match a track or a reconstructed conversion vertex)
- Identification Working Points (WP):
 - Loose WP: $p_T > 10$ GeV and |eta| < 2.37
 - Tight WP: p_T > 10 GeV and |eta| < 2.37, not in 1.37 < |eta| < 1.52
- FixedCutTight Isolation WP : $E_T^{cone40} < 0.022E_T^{y} + 2.45 \text{ GeV}$ and $p^{cone20} < 0.05p_T^{y}$
- Selected photons are required to satisfy the Tight Identification WP and the FixedCutTight Isolation WP

Electron reconstruction

- Topo-clusters:
 - clusters of energy deposits in connected cells of the EM
 - Matched to Inner Detector (ID) tracks and to conversion vertices
- Electron candidates: no conversion vertex is found, but the clusters match a track consistent with originating from an electron produced in the beam interaction region.
- Medium Working Points (MediumLLH): pT > 7 GeV and |eta| < 2.47
- FCLoose Isolation WP: : $E_T^{cone20} < 0.02p_T^{y}$ and $p^{varcone30} < 0.15p_T^{y}$
- Transverse impact parameter d_0 : significance < 5.0
- Longitudinal impact parameter z_0 : $|z_0| sin(theta) < 0.05 mm$

Mono-photon event selection

Pre-selection:

- data quality: the event must be in the good run list (GRL)
- HLT g140 loose trigger: at least one photon candidate with Loose WP and $p_T > 140$ GeV
- good vertex: primary vertex reconstructed with at least two good-quality tracks with $p_T > 0.5$ GeV and |eta| < 2.5
- jet cleaning: no LooseBad jet with $p_T > 20$ GeV overlapping with leptons or photons
- Selected objects:
 - Photon: pT > 10 GeV and |eta| < 2.37, not in 1.37 < |eta| < 1.52 (crack region)
 - Electron: pT > 7 GeV and |eta| < 2.47
 - Muon: pT > 6 GeV and |eta| < 2.5
 - Jet: pT > 30 GeV and |eta| < 4.5, not overlapping with an electron or photon by DeltaR > 0.4

Simultaneous fitting technique

- Simultaneous likelihood: $\mathcal{L}(data|\bar{k},\bar{\theta}) = \prod_{R} \operatorname{Pois}(N_{R}^{obs}|N_{R}^{bkg}(\bar{k},\bar{\theta})) \times f(\bar{\theta})$
- The free parameters of the fit are the signal yield and three k-factors: k_{yjet} , k_W , $k_Z = N_{SR} = k_{Z\gamma} N_{SR}^{MC} (Z + \gamma) + k_{W\gamma} N_{SR}^{MC} (W + \gamma) + k_{\gamma jet} N_{SR}^{MC} (\gamma + jet)$
- Background uncertainties: nuisance parameters and a Gaussian constraint term
- Background-only fit:
 - Background samples
 - estimation the k-factors
- Model-dependent fit:
 - signal sample
 - set exclusion limits