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Analogy with strong interactions. Chiral vs. gravitational dynamics

Chiral field U ∈ (SU(2)L × SU(2)R)/SU(2)V ,

U = exp(π/fπ), π = pion, fπ = pion decay constant.

Metric in R4 g ∈ GL(4)/O(1, 3),

g = exp(h/mP), h = graviton, mP =
√
8πG = Planck mass.

Chiral action

S =

∫
dx

[
f 2π
4
tr(U−1∂U)2 + ℓ1tr((U

−1∂U)2)2 + ℓ2tr((U
−1∂U)2)2 + O(∂6)

]
Gravitational action

S =

∫
dx

√
g
[
2m2

PΛ +m2
PR + ℓ1RµνρσR

µνρσ + ℓ2RµνR
µν + ℓ3R

2 + O(∂6)
]

R ∼ ΓΓ ∼ (g−1∂g)2



Analogy with electroweak interactions. The Higgs phenomenon
Central question in the physics is status of symmetries.

Basic properties of many systems determined by Higgs mechanism.

Gravity is one such system.

S =

∫
1

2
(Dµϕ

a)2 − λ

4

(
ϕ2 − υ2

)2
, Dµϕ

a = ∂µϕ
a + Aµ

a
bϕ

b.

< ϕ2 >= υ2 ̸= 0, Dµϕ
aDµϕa → υ2AµabA

µab.

The kinetic term of Goldstone bosons is the mass term of the gauge field.

Non-linear sigma model (”Higgsless Higgs mechanism”):

S =

∫
1

2
Dµφ

aDµφbhab(φ), φaφbhab(φ) = 1.

unitary gauge < φa >= 0:

υ2hab(φ)Dµφ
aDµφb → υ2AµabA

µab.



Gravity. GL(4) invariance

Consider arbitrary bases {ea} in the tangent spaces and {ea} in the cotangent spaces.
Given a coordinate system xµ, they are related to the coordinate bases by

ea = θa
µ∂µ , ea = θaµdx

µ .

The transformation matrices θa
µ and θaµ are called the frame field and coframe field

(a.k.a. soldering form). They can also be given a global geometrical meaning as
isomorphisms between two bundles.

Then θaµ and the metric gab are nonlinear objects

▶ metric gab ∈ GL(4)/O(1, 3),

▶ frame field θaµ ∈ GL(4), (detθ ̸= 0),

They carry nonlinear realizations of GL(4). Think of them as Goldstone bosons.

gµν = θaµ θ
b
ν gab ,

Aλ
µ
ν = θa

µAλ
a
bθ

b
ν + θa

µ∂λθ
a
ν .



Two known gauge choices for GL(4):

▶ θaµ = δaµ: coordinate frames - breaks GL(4) completely
→ metric formulation

▶ gab = ηab: orthonormal frames - breaks GL(4) to O(1, 3) (Local Lorentz group)
→ vierbein formulation

The torsion tensor and the nonmetricity tensor Q

Qλab = −Dλgab = −∂λgab + Aλ
c
a gcb + Aλ

c
b gac ,

Tµ
a
ν = ∂µθ

a
ν − ∂νθ

a
µ + Aµ

a
b θ

b
ν − Aν

a
b θ

b
µ

are the covariant derivatives of the Goldstone bosons.

Fµν
a
b = ∂µAν

a
b − ∂νAµ

a
b + Aµ

a
cAν

c
b − Aν

a
cAµ

c
b,

coefficients covariant derivative curvature

Independent connection Aµ
a
b Dµ Fµν

a
b

LC connection Γµ
a
b ∇µ Rµν

a
b



Gravitational Higgs mechanism

SG (θ, γ,A)=m
2

∫
d4x

√
|g |
[
T···T

···+Q···Q
···+T···Q

···]
expanding around flat background: A = 0, θ = 1, g = η

Tµ
a
ν = Aµ

a
ν − Aν

a
µ

Qµab = Aµab + Aµba

kinetic term of Goldstone bosons becomes

SG = m2

∫
d4x

√
|g | A···A

···

In general a non-degenerate quadratic form.



EFT at low energies in presence of Higgs phenomenon

▶ Superconductivity: for p ≪ mρ: ρ = ρ0, Dµφ = 0, B = 0 .

▶ Electroweak: for p ≪ υ: Dσ = 0, F a
µν |a∈(SU(2)L×U(1)Y )/U(1)Q = 0.

▶ MAG: or p ≪ MT ,Q : Q = −Dg = 0, T = d∆θ = 0, Fµν
a
b = Rµν

a
b.

Is Ostrogradsky ghost problem a problem? [Solomon, Trodden ’18]



MAGs and Poincaré gauge theory

R1,3 ⋊ O(1, 3)

ea
µ(x)− δa

µ = translation gauge field Tµ
a
ν = ∂µe

a
ν + Aµ

a
b e

b
ν − (µ ↔ ν),

Aµ
a
b(x) = Lorentz gauge field Fµν

a
b = ∂µAν

a
b + Aµ

a
cAν

c
b − (µ ↔ ν).

Same theory can be represented in various forms, for example via the distorsion tensor

Aµ
a
b = Γµ

a
b + ϕµ

a
b.

Actions can be written in different ways:

L = L(Fµνρλ,T ,Q,Dµ(A)),

L = L(Rµνρλ, ϕ,T ,Q,∇µ(Γ )).



Counting terms

Antisymmetric MAG (R&T):
R2 (∇T )2 R∇T R T 2 T 2∇T T 4 Total

3 9 2 14 31 33 92

[Christensen ’80]

Symmetric MAG (R&Q):
R2 (∇Q)2 R∇Q R Q2 Q2∇Q Q4 Total

3 16 4 22 59 69 173

General MAG (R&T&Q):
R2 (∇ϕ)2 R∇ϕ R ϕ2 ϕ2∇ϕ ϕ4 Total

3 38 6 56 315 504 922

In the general case we have 59 contributions to the flat-space 2-point function.



Spin projectors

s a

TT 2+4 , 0
+
5 1+4

TL 1−7 1−8
LL 0+6 -

ts hs ha ta

TTT 3−, 1−1 2−1 , 1
−
2 2−2 , 1

−
3 0−

TTL+ TLT + LTT 2+1 , 0
+
1 - - 1+3

3
2LTT - 2+2 , 0

+
2 1+2 , -

TTL+ TLT − 1
2LTT - 1+1 2+3 , 0

+
3 -

TLL+ LTL+ LLT 1−4 1−5 1−6 -

LLL 0+4 - - -

SO(3) spin content of projection operators for a rank-2 and rank-3 tensors in d = 4
(a/s=(anti)symmetric,ts/ta=totally (anti)symmetric; hs/ha=hook (anti)symmetric).

In addition to the metric degrees of freedom, MAG may propagate:
3−, 2+ × 3, 2− × 2, 1+ × 3, 1− × 6, 0+ × 4, 0−.



RG flow of Poincaré gauge theory

Consider the following action (in metric gauge):

S =
1

2

∫
d4x

√
g
(
−a0F + c1FµνρλF

µνρλ + a1TµνρT
µνρ
)
.

It leads to a kinetic operator with nonminimal terms:

F = −c1δAνρλ□δAνρλ − c1δAµρλ∇µ∇νδAνρλ − a0
2
hµν□hµν − a0h

µν∇µ∇ρh
ρ
ν

− 1

α
(hµν∇ν + βh∇µ − γ δTµ) (∇ρh

ρµ + β∇µh + γ δTµ) + . . .

In general, there are three ways to deal with nonminimal operators:

1. gauge choice

2. off-diagonal heat kernel

3. field decomposition (transverse–longitudinal, York)



Fixing the Local Lorentz symmetry

S =
1

2

∫
d4x

√
g det e (−a0F + c1Fµν

a
bF

µνa
b + a1Tµ

a
ρT

µ
a
ρ) .

Introduce new field variables

Xµ
ν := ēa

µδeaν ,

Zµ
λ
ν := ēa

λδAµ
a
b ē

b
ν , Zµρν = Zµνρ.

δgµν = Xµν + Xνµ + XaνX
a
µ + . . . ,

δAµ
α
β = −Xα

σZµ
σ
β + X σ

βZµ
α
σ + Zµ

α
β − Xα

σ∇µX
σ
β +∇µX

α
β + . . . .

This formulation possesses a symmetry:

Xµ
ν → Xµ

ν − ϵµν + ϵaνϵ
µ
a + . . .

Zµ
λ
ν → Zµ

λ
ν +∇µϵ

λ
ν − ϵλσ∇µϵ

σ
ν + . . . ,



Fixing the Local Lorentz symmetry

For the former we take the gauge fixing condition to be

Fµ = 2
√
a1∇αXµ

α = 0,

and we fix the gauge by adding the following term into the effective action:

Sg .f .diffeos =
1

2

∫
d4x

√
−gFµg

µνFν = a1

∫
d4x

√
−g∇αXµ

α∇βX
µβ.

For the O(1, 3) symmetry we impose

χλ
ρ = 2

√
c1∇αZα

λ
ρ = 0,

and the corresponding action term is

Sg .f .GL(4) =
1

2

∫
d4x

√
−gχµ

νgµλg
νρχλ

ρ =

∫
d4x

√
−g c1 ∇αZαλ

ρ∇βZβ
λ
ρ.

This way does not work for more general Lagrangians.



Unimodular Gauge Fixing
First, we partially break the symmetry by fixing the determinant of the metric to be
one: √

g = ω2(x).

This leaves the theory invariant under the special (volume-preserving) diffeomorphisms
SDiff.

gµν = ḡµρ
(
eh
)ρ

ν , hµµ = 0.

To break it further we apply a second condition which the trace-free version of the de
Donder condition:

∇νhµν −∇µh + δTµ = χµ,

According to the Faddeev-Popov procedure, we add to the EA

Sg .f . = lim
α→∞

1

α

∫
d4x

(
g − ω2

)
+

∫
d4x

√
g (χµ□χµ) ,

UV divergences in the Diff-invariant version of a theory and the Unimodular version of
it are the same. [de Brito, OM, Percacci, Pereira ’21]

S =
1

2

∫
d4x

√
g
[
−m2

0R − b1Tνρλ□T νρλ − b2Tνρλ□T νλρ − b3Tν□T ν − . . .
]



Schwinger-DeWitt (Heat Kernel) technique
[Schwinger ’51, DeWitt ’65]

A formal way to treat functional traces and determinants of local pseudo-differential
operators (including but not necessarily Laplace-type). We define

H(s) = e−s∆ .

for ∆ = −□+ E . It gives, for example, definitions of the propagator and 1-loop
effective action as

1

∆
=

∫ ∞

0
ds e−s∆ Γ1−loop =

1

2
Tr log∆ =

1

2

∫ ∞

0

ds

s
Tre−s∆

Tr H(s) =
1

(4πs)d/2

∑
n≥0

∫
ddx

√
gsn tr an ,

an(x) are local functions of the curvature invariants and their covariant derivatives.

What happens in the nonminimal case?

∆µν = −gµν□+∇µ∇ν + Vµ∇ν + Eµν



1-loop EA in the nonminimal case.

F (λ) = Fmin + λN [Barvinsky, Vilkovisky ’85]

Γ1−loop =
1

2
Tr log F

Γ1−loop(λ) = Γ(λ = 0) +
1

2

∫ λ

0
dλ Tr

[
F−1(λ) · dF

dλ

]
,

Γ1−loop(λ = 1) =
1

2
Tr log Fmin +

1

2

∫ 1

0
dλ Tr [G (λ) · N] .



Generalised Schwinger-DeWitt (Off-diagonal Heat Kernel) technique

F G = 1.

F0 G0 = 1, ∇µ → nµ, R → 0, T → 0.

F G0|nµ→∇µ = 1 +M(∇,R,R2,T ,T 2,R∇T , etc .),

G = G0
1

1 +M
= G0

[
1−M +M2 − . . .

]
sort derivatives: commute all contracted derivatives to the right (to form □’s)

[X , f (□)] =
∞∑
n=1

1

n!
(−1)n−1

[
X , □

]
n
f (n)(□)



Universal functional traces

Tr[∇µ1 . . .∇µn f (∆)] =

∫
ddx

√
g

∫
ds f̃ (s)Hµ1...µN

(x , s) =

=
1

(4π)d/2

∑
n≥0

Q−n+ d
2
+⌊N/2⌋[f ] · tr

∫
ddx

√
gK (n)

µ1...µN
(x)

H(x , s) = (4πs)−d/2
∑
n≥0

snan, ∆ = −□+ E

Hµ(x , s) = (4πs)−d/2
∑
n≥0

sn∇µan, Ωµνφ = [∇µ,∇ν ]φ

a0 = 1 a1 = −E +
1

6
R ,

a2 = −1

6
□E +

1

2
E 2 − 1

6
RE +

1

12
ΩµνΩ

µν +
1

72
R2 − 1

180
R 2
µν +

1

180
R 2
µναβ ,

∇(ν∇µ)a0 =
1

6
Rνµ ,

∇(α∇ν∇µ)a0 =
1

4
R(νµ;α). [Groh,Saueressig ,Zanusso ′11]



Gravity with propagating torsion

Tµ = Tµ
α
α,

Ťµ = ϵµνρλT
νρλ,

t̂αβγ = Tαβγ − T[αβγ] −
1

6
g[αβTγ].

S =
1

2

∫
d4x

√
g
[
−m2

0R +m1TµT
µ +m2ŤµŤ

µ +m3tµνρt
µνρ + ζR2 + ηCµνρλC

µνρλ

+ r1R ∇µT
µ + r2Cµνρλ∇µt̂νρλ − d1Tµ□Tµ + d2Tµ∇µ∇νT ν − d3Ťµ□Ťµ

+d4Ťµ∇µ∇νŤ ν − d5t̂µνρ□t̂µνρ + d6t̂µρλ∇µ∇ν t̂
νρλ + d7t̂µρλ∇µ∇ν t̂

νλρ

+d8Tµ∇ν∇ρt̂
ρνµ + d9ϵµνρλT

µ∇λ∇σ t̂
σνρ + . . .

]
.

Even the first curvature squared term contributes to all other terms allowed by the
symmetries.

Can field redefinitions help?

Tαβγ → α1 Tαβγ + α2 Tαγβ + α3 gαβTγ + ?



On-shell reduction of the effective action
Consider the following infinitesimal redefinitions of the fields and the corresponding
change of the effective action:

φ → φ+Ψ[φ], φ ≫ Ψ[φ], Γ[φ] → Γ[φ] +
δΓ

δφ
Ψ[φ].

Let us assume that the usual perturbative expansion of the effective action is valid:

Γ = S +
∞∑
k=1

ℏkΓ(k), S ≫ ℏΓ(1), Γ(k) ≫ ℏΓ(k+1) ∀k > 0.

This means that higher order (in ℏ) terms proportional to the equations of motion
obtained from the lower order (in ℏ) terms can be eliminated from the effective action
by appropriate field redefinitions. The obtained action we will refer to as the on-shell
effective action:

Γ(1) ≈ Γ
(1)
on−shell +

δS

δφ
Ψ[φ],

Γ(k) ≈ Γ
(k)
on−shell +

δ

δφ

(
S +

k−1∑
l=1

Γ(l)

)
Ψ[φ].



On-shell reduction of the effective action
Assuming that we are in a regime of validity of EFT:

|p| ≪ Λcutoff ∼ mPl ,

contributions of lower mass dimension are dominant.

δS

δgµν
gµν ≃

∑
all dim ≤ 2 terms

2
δS

δgµν
Rµν ≃ m2

0RµνR
µν − 1

2
m2

0R
2

δS

δgµν
gµνR ≃ −1

2
m2

0R
2

δS

δgµν
∇γTµν

γ ≃ 1

2
m2

0H
5
RT

2
δS

δgµν
gµν∇αT

α ≃ −m2
0H

3
RT +

1

2
m2

0H
5
RT

etc .



On-shell reduction of the effective action

gµν → γgµν + η1Rgµν + η2Rµν + η3∇(µTn) + η4∇ρTρ(µν) + . . .

Tαβγ → α1 Tαβγ + α2 Tαγβ + α3 gαβTγ

+ ϵ1i ∇.R.. + ϵ2i ∇.∇.T... + ϵ3i R....T... + . . .

As a result, all the operators that give contributions to the propagator are “inessential”.

Γ(1) ≈ δS

δφ
Ψ[φ] + “interaction terms”.

This means that on-shell the form of the propagator can be maintained.



Takeaways:

1. Gravity can be viewed in a way that is similar to particle physics (Chiral
theory of pions, Electroweak Symmetry Breaking, Higgs mechanism).

2. When treated as an EFT, MAG explains why we see the Levi-Civita
connection at low energies.

3. Even though it lacks predictivity at very high energies, it is consistent and
predictive below the Plank mass. Quantum effects will come as loop
corrections to G.

4. Field redefinitions are essential to understand whether a given Lagrangian is
closed under renormalization. In the on-shell scheme, quantum corrections
do not alter the form of the propagator.

Thank you!
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