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Analogy with strong interactions. Chiral vs. gravitational dynamics
Chiral field U € (SU(2). x SU(2)r)/SU(2)v,

U = exp(n/fr), m = pion, f; = pion decay constant.
Metric in R* g € GL(4)/0(1,3),
g = exp(h/mp), h = graviton, mp = V81 G = Planck mass.
Chiral action
S5— / d [’ftr(u—lauf + Otr((UTOUR) + botr(U- 0UY) + 0(8°)
Gravitational action
S= /dx\/g [2mEA + MER + (1R po R*P7 + LR, R + (3R? + 0(0°)]

R~TT ~ (g7 10g)?



Analogy with electroweak interactions. The Higgs phenomenon
Central question in the physics is status of symmetries.
Basic properties of many systems determined by Higgs mechanism.

Gravity is one such system.
S= / % (D9°) - % (6% —0?)2, D¢ = 0,67 + A7 ho”.
< P2 >=0%#£0, D,¢*DF ¢y — v A, AP
The kinetic term of Goldstone bosons is the mass term of the gauge field.

Non-linear sigma model (" Higgsless Higgs mechanism”):

1 a a
5=/§%¢D%%M@, P79 hap(p) = 1.
unitary gauge < ¢? >=0:

vzhab(gp)Ducpa D“gpb — vauabA“ab.



Gravity. GL(4) invariance

Consider arbitrary bases {e,} in the tangent spaces and {e?} in the cotangent spaces.
Given a coordinate system x*, they are related to the coordinate bases by

e, =0,"0, , e? = 67,dx" .

The transformation matrices ¢, and 67, are called the frame field and coframe field
(a.k.a. soldering form). They can also be given a global geometrical meaning as
isomorphisms between two bundles.

Then 67, and the metric g,5 are nonlinear objects
> metric g, € GL(4)/0(1,3),
> frame field 07, € GL(4), (detf # 0),

They carry nonlinear realizations of GL(4). Think of them as Goldstone bosons.

Buv = 93# ebu 8ab
Ay, = 04 ANT 0P, + 010,07, .



Two known gauge choices for GL(4):

> ¢ = 45 coordinate frames - breaks GL(4) completely
— metric formulation

» gab = Map: Orthonormal frames - breaks GL(4) to O(1,3) (Local Lorentz group)
— vierbein formulation

The torsion tensor and the nonmetricity tensor @

Qrab = —Dx8ab = —028ab + Ax“28cb + Axb Gac,
T2, = 0,0°, —0,0°, + A 0%, — A2, 0°,

are the covariant derivatives of the Goldstone bosons.

F,uuab = 8uAyab - al/A;Lab + AuacAucb - AuacA,ucba

coefficients | covariant derivative | curvature
Independent connection Aulp D, Fuu®b
LC connection I, V, Ruv®p




Gravitational Higgs mechanism

Sg(H,V,A):mZ/dA'x [T T"+Q.Q +T.Q"]

expanding around flat background: A=0,0=1, g =7

a a a
Ty = Ay = ASy

Q,uab = A,uab + A,uba

kinetic term of Goldstone bosons becomes
S¢ = mz/d4x lg| A.A”

In general a non-degenerate quadratic form.



EFT at low energies in presence of Higgs phenomenon

» Superconductivity: for p < m,: p=po, D,p=0, B=0.
» Electroweak: for p < v: Do =0, FSV|3€(5U(2)[_XU(].)Y)/U(I)Q =0.

» MAG:or p< M1 g: Q=-Dg=0, T=da0=0, Fu° =Ru..

Is Ostrogradsky ghost problem a problem? [Solomon, Trodden '18]



MAGs and Poincaré gauge theory

R13 % O(1,3)
e,t'(x) — 0," = translation gauge field T2 = 0ue®, + Alpel, — (e v),
A.7p(x) = Lorentz gauge field Fi’b = 0uA "+ AlcAS b — (1> v).

Same theory can be represented in various forms, for example via the distorsion tensor

Auab = ruab + ¢uab~

Actions can be written in different ways:
L= 'C(F,uypkv Ta Qa D;L(A))v

,C = ‘C(RMVP)W Qb, Ta Qa VM(F))



Counting terms

Antisymmetric MAG (R&T):
R2[(VT)2 | RVT | RT? | T°VT | T* | Total
3 9 2 14 31 [33] 9

[Christensen '80]

Symmetric MAG (R&Q):
RZ][ (VQR)? | RVQ | RQ* [ @°VQ | @* | Total
3 16 4 22 50 |69 | 173

General MAG (R&T&Q):
R (Vo2 | RVo | R& | 92V | ¢* | Total
3 38 6 56 315 | 504 | 922

In the general case we have 59 contributions to the flat-space 2-point function.



Spin projectors

TT [ 2,08 | 17
TL 15 lg

LL | 0f -
ts hs ha ta
TTT 37,17 | 27,1, [ 25,15 | 0™
TTL+ TLT + LTT | 27,07 - - 15
SLTT - 257,05 | 13, -
TTL+ TLT —3LTT | - 17 25,07 | -
TLL+ LTL+ LLT 1, 1 i -
LLL 0, - - -

S0(3) spin content of projection operators for a rank-2 and rank-3 tensors in d = 4
(a/s=(anti)symmetric,ts/ta=totally (anti)symmetric; hs/ha=hook (anti)symmetric).

In addition to the metric degrees of freedom, MAG may propagate:
37,27 x3,27x2,17x3,17x6, 0" x4, 0.



RG flow of Poincaré gauge theory

Consider the following action (in metric gauge):

1
S= 5 / d*x\/g (—aoF + a1 Fuupn FPP + ag TWPTW") .
It leads to a kinetic operator with nonminimal terms:
F = —c10A, 06 A" — ci5A, 2V, VY 6AYPN — %hﬂyﬂh"” — aph"'V V)b,

1
- (hw V" + BhV =~ 6T,) (Vph** + BVEh 44 6TH) + ...

In general, there are three ways to deal with nonminimal operators:

1. gauge choice
2. off-diagonal heat kernel

3. field decomposition (transverse—longitudinal, York)



Fixing the Local Lorentz symmetry

1
S = 2/d4x\/§ det e (—30F+ Cle,abF’wab + a1 TuapT“ap).
Introduce new field variables

R~ a
XH, = etde?,,

Az a =b _
ZM v .= € 5AM b€ v, ZMPV - Zﬁ“’p'

5gp,y == Xuy +qu +XayXau + . Cey

0A s = =X Z. 5+ X2, % + 2,5 = XV X5+ V, X% 4. ..

This formulation possesses a symmetry:

XH, = XV, —et, e, + ...

A A A A
2, = 2y Ve, — €6V, +



Fixing the Local Lorentz symmetry

For the former we take the gauge fixing condition to be

Fu=2yaiVoX,“ =0,
and we fix the gauge by adding the following term into the effective action:

1
Sg . diffeos = 5 / d*xv/—gF.g"' F, = a1 / d*x/=gVa X, *V XM

For the O(1,3) symmetry we impose

A az A _

X"p=2y/aV*Z, ", =0,

and the corresponding action term is

1 v, (6%
Sg.f.GL#4) = 2/d4X\/ —&x"v8un8""X"p = /d4X —g &1 VOZ,\PVPZ5*,.

This way does not work for more general Lagrangians.



Unimodular Gauge Fixing

First, we partially break the symmetry by fixing the determinant of the metric to be
one:

VB = w?(x).
This leaves the theory invariant under the special (volume-preserving) diffeomorphisms
SDiff.

_ p

Buv = Bup (eh) Vs h“u = 0.
To break it further we apply a second condition which the trace-free version of the de
Donder condition:

VY = Vuh 40T, = xpu,
According to the Faddeev-Popov procedure, we add to the EA

Sg.r. = lim 1/d“x (g—wz) +/d4x V& (xuOx*),

a—o0 (X

UV divergences in the DifFinvariant version of a theory and the Unimodular version of
it are the same. [de Brito, OM, Percacci, Pereira '21]

1
S=3 / d*x /g |~miR = b Ty WO = by T, \OT* — by T,OT” — ...



Schwinger-DeWitt (Heat Kernel) technique
[Schwinger '51, DeWitt '65]

A formal way to treat functional traces and determinants of local pseudo-differential
operators (including but not necessarily Laplace-type). We define

H(s) = e 2.

for A = -+ E. It gives, for example, definitions of the propagator and 1-loop
effective action as

1 & _ ds
A:/o ds e=s4 M—loop = TrIogA— 2/0 ?Tre
Tr H(s) d/zz/ddx\fs tra,,
n>0

an(x) are local functions of the curvature invariants and their covariant derivatives.

What happens in the nonminimal case?

Ay = —g,0+V,V, + V,V, + E,,



1-loop EA in the nonminimal case.

F(\) = Fpin + AN [Barvinsky, Vilkovisky '85]
1
Fl,,oop = ETI‘ /og F

1 [ L dF
M—toop(A) =T(A=0) + 2/0 d\ Tr [ FL(\) - dA] ,

1 1/t
M1 loop(A = 1) =  Tr log Fin + 2/0 ) Tr[G(\) - N].



Generalised Schwinger-DeWitt (Off-diagonal Heat Kernel) technique
FG=1.
Fo Gop =1, Vy—+n, R—0, T—=0.

F Golp, v, =1+ M(V,R,R*, T, T> RVT,etc.),

=G [1-M+M —.. ]
sort derivatives: commute all contracted derivatives to the right (to form 's)

(X, f(O fi} *x, 0], fM0O)
=1



Universal functional traces

Te[V,, ...V, f(D)] = / déx\/E / ds F(s)Hpy.. (%, 5) =

1 ., )
= am? 2 Qg ll] / dx VEK, (%)
n>0
H(x,s) = (4ms)" %> " s"a,, A—_O+F
n>0
HM(X7 s) = (4775)7(1/2 Z Snmv Qe = [Vm Ve
n>0
_ _ 1
ag =1 31:_E+6R’
1 1 1 1 1 1 1
@H=--0E+ZE2 - ZRE4+ —Q, 0" + R~ —R2+ _—_R2
2 6 +2 6 +12 " +72 180 “V+180 AR
= 1
ViVindo = Ry,

- 1
V(aVuV,ya0 = ZR(VM&)' [Groh, Saueressig, Zanusso'11]



Gravity with propagating torsion
Tu = Tuaav
'IV'H = €uvpA T”p>‘,

~ 1
tagy = Tapy = Tjapy) — 688 Ty

1 .
5=3 / d*xg [—ng +m T, T+ ma T T+ maty )t 4 CR? + 1 Cpuppp CHPA
+ 1RV, TF 4+ 1 CupVutiy — i T,OTH + o TV, V' T" — d3 T,0T*
+ds T,V VY TV — dsty, 087 + dotpp VHV, TP + dot, ) VIV, £
s TV VB doeyupn VAV, 77 4
Even the first curvature squared term contributes to all other terms allowed by the

symmetries.
Can field redefinitions help?

Ta/gfy — Qa1 Ta/g,y + ao Ta,y/g + a3 gas T’Y + 7



On-shell reduction of the effective action
Consider the following infinitesimal redefinitions of the fields and the corresponding
change of the effective action:

© — o+ Vg, © > Y[y, Ml — Tyl + :;Z‘UM-

Let us assume that the usual perturbative expansion of the effective action is valid:

=S+ rr, S>arM, k) s prit) oy > 0.
k=1

This means that higher order (in 1) terms proportional to the equations of motion
obtained from the lower order (in %) terms can be eliminated from the effective action
by appropriate field redefinitions. The obtained action we will refer to as the on-shell
effective action:

r~rw

on—shell

0S

k—1
0
r(k) ~ I—Ezl:r)—shell + % (S + Z r(l)> W[so]
=1



On-shell reduction of the effective action

Assuming that we are in a regime of validity of EFT:

|P| < Neutoff ~ mpy,

contributions of lower mass dimension are dominant.

6S
5g, B = > all dim <2 terms
uv
0S ) 1 5
QERW ~ my R R — SmgR
0S 1
R ~ - 2R2
5g,uugw/ 2m0
0S 1
@vv T =~ EmgHgT
oS 1
zdgwg””v T = —miHgr + 2

etc.

2145
moHpr



On-shell reduction of the effective action

8uv — V8w +m Rguu + 772Rp,u + 773v(u Tn) + 774vp Tp(ul/) + .
Taﬂfy — Qa1 Taﬁfy —+ o To,yﬁ + a3 8ap T,y
+6&VR +&VV.T +&R T +...

As a result, all the operators that give contributions to the propagator are “inessential”.
oS . .
r@~ 5—\U[<p] + “interaction terms”.
¥

This means that on-shell the form of the propagator can be maintained.



. Gravity can be viewed in a way that is similar to particle physics (Chiral
theory of pions, Electroweak Symmetry Breaking, Higgs mechanism).

. When treated as an EFT, MAG explains why we see the Levi-Civita
connection at low energies.

. Even though it lacks predictivity at very high energies, it is consistent and
predictive below the Plank mass. Quantum effects will come as loop
corrections to G.

. Field redefinitions are essential to understand whether a given Lagrangian is
closed under renormalization. In the on-shell scheme, quantum corrections
do not alter the form of the propagator.

Thank you!
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