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Introduction

Despite the success of general relativity, there are still unsolved problems, such as:

· GR describes only the classical aspects of gravitational interaction;
· The accelerated stages of the expansion of the Universe can be explained only

beyond the Standard Model;
· There is no mechanism ensuring the observed smallness of the CC: Λ ∼ 10−122m2

Pl.

In an attempt to resolve these, a huge number of modified gravity models have been
developed, and one of the most promising ways to extend the GR is f (R) gravity.

Inflationary scenarios have increased interest in f (R) theories, beginning with the
seminal Starobinsky model (Starobinsky, Phys. Lett. B, 1980):

SStarob =
m2

Pl
2

∫
d4x

√
|g4|

(
aStarobR

2 + R
)
,

which has remained very successful up to now. The inflationary predictions originally
calculated to the lowest order (Mukhanov, Chibisov, ZhETF Pisma, 1981):

ns ≃ 1 −
2
Ne

≃ 0.9649 ± 0.0042, r ≃
12
N2

e
< 0.032

are in good agreement with the Planck 2018 data with a combination of BICEP/ Keck
Array 2018 and BAO (Tristram et al., Phys. Rev. D, 2022) for 50 < Ne < 60.

The R2 multiplier obtained from the COBE normalization (Planck results, A. & A., 2020) is

aStarob ≃ 1.12 · 109
(
Ne

60

)2
m−2

Pl .
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Introduction

SStarob =
m2

Pl
2

∫
d4x

√
|g4|

(
aStarob

∼109

R2 + R + ...
∼10−122

)
Nevertheless, there is no natural expectation for the coefficient in front of the
R2-term in the action to be large and in the IR limit the Starobinsky model

implies that the cosmological constant must be fine-tuned

These features of the Starobinsky model can be resolved (Asaka et al., PTEP, 2016)
by considering it as a low-energy effective theory of a multidimensional theory due to

the compactification of extra dimensions

SD = Λ̃D
∫

dDx
√

|gD|
∑
k=0

Ak

(
RD

Λ̃2

)k
→ S4 = Λ̃DVD−4

∫
d4x

√
|g4|

∑
k=0

Ak

(
R

Λ̃2

)k
,

where Λ̃D−2VD−4
A1

A2
=

m2
Pl
2

and Λ̃D−4VD−4 =
m2

Pl
12m2 ≡

m2
Pl
2

aStarob ∼ 109 ⇒

S4 =
m2

Pl
2

∫
d4x

√
|g4|

(
R + aStarobR

2 +
∞∑
k=3

Ak

Ak−1
2

Rk

ak−1
Starob

)
.

However, the fine tuning of the CC and the extra space stabilization problem remain.
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The model

We develop an inflationary model without small parameters on the basis of quadratic
f (R) gravity with a minimally coupled scalar field φ in D = 4 + n dimensions

S =
mD−2

D
2

∫
dDx

√
|gD|

(
aR2 + R + c + ∂Mφ∂Mφ− 2V

(
φ
))

,

for the chosen metric of M1 ×M3 ×Mn manifold as

ds2 = dt2−e2α(t)
δijdx

idx j−e2β(t)m−2
D

((
dx4)2+r2(x4)

(
dx5)2+...+r2(x4)

D−2∏
k=5

(
sin2 xk

)(
dxk+1)2)

The model is described by two stages:

1. The first one begins at energy scales about mD ∼ 1014 GeV and ends with the
de Sitter metric of our space and maximally symmetric extra space.

2. At the second stage, the quantum scalar field fluctuations produce a wide set of
inhomogeneous extra metrics in causally disconnected regions quickly generated
in the de Sitter space.

A specific extra space metric that leads to the effective Starobinsky model that fits the
observational data was found.
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The first stage: high-energy space expansion
Let us consider metric, where Mn is the n-dimensional sphere, i.e., r(x4) = sin x4,

ds2 = dt2 − e2α(t)δijdx
idx j − e2β(t)m−2

D dΩ2
n, i , j = 1, 3

and all dynamical variables depend only on time. Then, the system of equations for
(tt), (x1x1) = (x2x2) = (x3x3), (x4x4) = ... = (xD−1xD−1)–components and field
equation lead to the asymptotic behavior of the metric and the scalar field: φas = 0

H2
as =

−
(
n + 2

)
±
√(

n + 2
)2 − 4an

(
n + 4

)
c

6an
(
n + 4

) ;

e−2βas =
−
(
n + 2

)
±
√(

n + 2
)2 − 4an

(
n + 4

)
c

2an
(
n + 4

)(
n − 1

)
m2

D
≡ e−2βc .

m2
De−2βas =

3H2
as(

n − 1
)
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The first stage: high-energy space expansion

Action takes the following form after integration over the extra coordinates

S I
eff =

m2
Pl
2

∫
d4x

√
|g4|
(
aeff R

2
4 + R4 + ceff

)
with effective parameters and the relationship between the 4D and D-dim Planck masses

aeff m
2
Pl =

1
2
Vnm

2
Denβc fRR

(
Rn
)
, m2

Pl = Vnm
2
Denβc fR

(
Rn
)
, ceff m

2
Pl = Vnm

2
Denβc f

(
Rn
)

here the n-dim Ricci scalar Rn = n
(
n−1

)
m2

De−2βc and volume Vn = 2π
n+1
2 / Γ

( n+1
2

)
.

In the case of
a = 20m−2

D , c = −0.95m2
D, n = 6,

the effective parameter values become

aeff m
2
Pl ≃ 2.65 · 109, m2

Pl ≃ 9.26 · 108m2
D, ceff m

2
Pl ≃ −4.63 · 107m4

D,

hence, it is the non-zero value of ceff that causes the de Sitter metric of our 4D space.

The D-dim Planck mass to 4D relation gives expression in physical units

mD ∼ 1014 GeV, H ∼ 1013 GeV , and eβc ∼ 10−27 cm.

for mPl = MPl/
√

8π = 2.4 · 1018 GeV.

6 / 15



The second stage: observable inflation, inhomogeneous extra dimensions
The high-energy stage is finished with 4D dS metric and maximally symmetrical extra space.
As usual, the space expands exponentially, producing more and more causally disconnected
volume, each of which is characterized by a specific extra metric and a scalar field distribution.
The scalar field fluctuations at the dS stage can break the symmetry of the extra space metric,
resulting in inhomogeneous metric formation.

Here we consider an inhomogeneous n-dimensional extra metric

ds2 = dt2 − e2Ht
((

dx1)2 +
(
dx2)2 +

(
dx3)2)− e2βcm−2

D

(
du2 + r2(u) dΩ2

n−1

)
.

To obtain a numerical solution, we use the definition of the Ricci scalar R as the additional
unknown function to avoid 3rd and 4th order derivatives in the equations1, resolving the
corresponding system of equations with respect to unknown functions r(u), φ(u), and R(u)
with boundary conditions

r(umin) = 0, r ′(umin) = 1, R(umin) = R0, φ(umin) = φ0,

R′(umin) = 0, φ
′(umin) = 0.

We suppose that umin = 0 is the regular center and R0 and φ0 values are linked by the
constraint equation on the coupled second-order differential equations:(

3
(
n + 3

)
H2 − R

)
fR +

f (R)

2
= −

(
φ′)2
2

m2
De−2βc + V

(
φ
)
,

coming from the combination of equations
(
(tt) − (x5x5)

)
·
(
n − 1

)
− (uu) − R · fR .

1 Note that equations are not independent:

(x5x5) = (uu) +

(
d

du
(uu) +

fR

2
·

d

du
(R) + φ′ · (φφ)

)
·

r

r ′ (n − 1)
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Observable inflation: numerical results
In the case of homogeneous scalar field distribution there is a solution Rc of constant curvature

the constraint equation on the coupled second-order differential equations:(
3
(
n + 3

)
H2 − R

)
fR +

f (R)

2
= −

(
φ′)2
2

m2
De−2βc + V

(
φ
)
,

for any form of f (R) function. For constant curvature the difference of (tt)− (uu)-comp. allows

r(u) = mDe−βc

√
(n − 1)
√

3H
sin

( √
3H√

(n − 1)
eβcm−1

D u

)
to find analytically the function r(u), ∀fR (Rc) ̸= 0 and then Rc = 12H2 + 3nH2.

As can be seen from some examples above for n = 3, 4, 6, and potential V (φ) = 1
2m

2φ2, the
properties of inhomogeneous extra space vary significantly depending on the parameter values. 8 / 15



Observable inflation: effective coefficients

The deformed configuration leads to an alternation of the Lagrangian parameters aeff
and ceff and launches the second, low-energy step of inflation.

At this stage, after integration over extra coordinates, action turns to the effective thy

S II
eff =

m2
Pl
2

∫
d4x

√
|g4|
(
aeff R

2
4 + R4 + ceff

)
with effective values of the parameters

aeff = Vn−1enβc
m2

D
2m2

Pl

umax∫
umin

fRR
(
Rn(u)

)
rn−1(u) du,

m2
Pl

m2
D

= Vn−1enβc

umax∫
umin

fR
(
Rn(u)

)
rn−1(u) du,

ceff = Vn−1enβc
m2

D
m2

Pl

umax∫
umin

(
f
(
Rn(u)

)
−
(
φ′(u)

)2
m2

De−2βc − 2V
(
φ(u)

))
rn−1(u) du.

As follows from the more general form for ceff above, it depends on the extra space
metric and the scalar field distribution.
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Observable inflation: fitting to observational data
The parameter values a = 20m−2

D , c = −0.95m2
D, n = 6, m = 0.05mD suit our aims.

The parameter ceff changes its sign somewhere near φ0 ≃ 3.015. This means that we
can find an extra metric for which ceff ≃ 0 with arbitrary good accuracy. It allows one
to calculate numerically other effective parameters, i.e., aeff and the ratio m2

Pl/m
2
D.

As a result, we have mD ∼ 1014 GeV, H ∼ 1013 GeV, aeff ≃ aStarob ∼ 109m−2
Pl and

ceff is negligibly small at the boundary value of the scalar field φ0 ≃ 3.015.

This means that the Starobinsky model is restored, and the values of the
initial parameters have a reasonable deviation from unity.

We can also reach suitable effective values for other sets of parameters, including
another dimension of the extra space: the set a = 50m−2

D , c = −0.25m2
D, n = 5,

m = 0.02mD also reproduces the Starobinsky model with appropriate parameters.
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H → 0 limit
Let us simplify the form of the cosmological constant. To this end, we integrate (tt) -
comp. over the extra dimensions

∫
dnx

√
|gn|(tt) and the comparison with ceff gives

ceff = Vn−1enβc
m2

D
m2

Pl

umax∫
umin

(
6H2fR

(
RD(u)

)
− f
(
RD(u)

)
+ f
(
Rn(u)

))
rn−1(u) du.

Here, RD = 12H2 + Rn so that ceff
H→0−−−→ 0, that reasonable for our effective action.

By expanding the integrand in expression above, one obtains

ceff = −6H2 Vn−1enβc
m2

D
m2

Pl

umax∫
umin

fR
(
Rn(u)

)
rn−1(u) du,

which, being combined with

m2
Pl

m2
D

= Vn−1enβc

umax∫
umin

fR
(
Rn(u)

)
rn−1(u) du,

yields the well-known relation H2 = Λ/3 for the standard notations ceff = −2Λ, where
Λ is the cosmological constant.

Note that we can find a numerical solution for a compact inhomogeneous subspace at
H ≃ 0, in contrast to the case of a maximally symmetric one:

m2
De−2βc =

3H2(
n − 1

) .
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Conclusion and outlook

· Many inflationary models explain observational data at the cost of using a small
parameter to account for the smallness of the Hubble parameter H ∼ 10−6mPl.
Also, it is implicitly assumed that one of the model parameters related to the
cosmological constant is extremely small (fine-tuned).

· In this work, we elaborate the inflationary model without unacceptably small or
large parameters of the Lagrangian: a = 20m−2

D , c = −0.95m2
D, m = 0.05mD,

and n = 6. The effective parameters aeff m
2
Pl ∼ 109, ceff m

−2
Pl ≃ 0 suitable for the

experimental data are formed by the inhomogeneous extra metric.
We also show the way to a significant decrease in the cosmological constant.

· It is of interest to investigate the stability of the obtained inhomogeneous extra
space and explore their effects on inflationary predictions and observable low
energy physics, e.g. on the electroweak scale.

Thank for your attention!
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Backup

−
(
3α̇ + nβ̇

)
ṘfRR +

(
3α̈ + nβ̈ + 3α̇2 + nβ̇2

)
fR −

f (R)

2
= −

φ̇2

2
− V

(
φ
)
,

Ṙ2fRRR +
(
R̈ +

(
2α̇ + n β̇

)
Ṙ
)
fRR −

(
α̈ + 3α̇2 + nα̇β̇

)
fR +

f (R)

2
= −

φ̇2

2
+ V

(
φ
)
,

Ṙ2fRRR +
(
R̈ +

(
3α̇ +

(
n − 1

)
β̇
)
Ṙ
)
fRR −

(
β̈ + 3α̇β̇ + nβ̇2 +

(
n − 1

)
m2

De−2β(t)
)
fR +

+
f (R)

2
= −

φ̇2

2
+ V

(
φ
)
,

φ̈ +
(
3α̇ + nβ̇

)
φ̇ + V ′

φ = 0,

In the slow-roll approximation, φ̇2 ≪ V
(
φ
)
, |φ̈| ≪ |V ′

φ|, α̇ ≃ const ≡ H and β̈ ≃ β̇ ≃ 0

3H2fR −
f (R)

2
≃ −V

(
φ
)
,

−
(
n − 1

)
m2

De−2βc fR +
f (R)

2
≃ V

(
φ
)
,

3Hφ̇ + V ′
φ ≃ 0.

In the absence of extra dimensions and for the standard linear gravity, f (R) = R, equations
yield the well-known relations

3H2 ≃ V
(
φ
)∣∣

mPl=1 , 3Hφ̇ ≃ −V ′
φ.

Equations also lead to the relationship, valid for any form of f (R) and V (φ):

m2
De−2βc =

3H2(
n − 1

) .
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((
R′)2fRRR +

(
R′′ +

(
n − 1

) r ′
r
R′
)
fRR

)
m2

De−2βc + 3H2fR −
f (R)

2
= −

(
φ′)2
2

m2
De−2βc − V

(
φ
)
,

(
n − 1

)( r ′

r
R′ fRR −

r ′′

r
fR

)
m2

De−2βc −
f (R)

2
=

(
φ′)2
2

m2
De−2βc − V

(
φ
)
,((

R′)2fRRR +

(
R′′ +

(
n − 2

) r ′
r

R′
)
fRR

)
m2

De−2βc−

−
(

r ′′

r
+
(
n − 2

)( r ′

r

)2
−

(n − 2)
r2

)
m2

De−2βc fR −
f (R)

2
= −

(
φ′)2
2

m2
De−2βc − V

(
φ
)
,(

φ
′′ +

(
n − 1

) r ′
r

φ
′
)
m2

De−2βc − V ′
φ = 0,

R(u) = 12H2 −
(
n − 1

)( 2r ′′

r
+
(
n − 2

)( r ′

r

)2
−

(n − 2)
r2

)
m2

De−2βc

Note that the solution to (
3
(
n + 3

)
H2 − R

)
fR +

f (R)

2
= V

(
φ
)

is f (R) = C0

√
R − 3

(
n + 3

)
H2 if V = 0. This solution with C0 = 2

√
3H2

(
6a
(
n + 4

)
H2 + 1

)
is equivalent to relation

H2
as =

−
(
n + 2

)
±
√(

n + 2
)2 − 4an

(
n + 4

)
c

6an
(
n + 4

)
for chosen function f (R) = aR2 + R + c and constant curvature R = Rc.
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Backup

Figures below show some acceptable ranges that ensure aeff ∼ 109m−2
Pl ,

mD ∼ 1014 GeV, and H ∼ 1013 GeV for a given dimension of subspace n

As one can see, the number of extra dimensions influences mostly the range of the
parameter c. The choice of the remaining parameters, such as m and boundary

conditions φ0 or R0, is owing to achieving ceff ≃ 0.
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