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Overview

▶ Gravitational collapse
▶ regular BH
▶ CH instability and mass-inflation
▶ Stability of BH core
▶ Conclusions
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Regular BH

▶ The occurrence of singularities is often taken as an indicator
that general relativity is incomplete and should be generalized
to a quantum theory expelling this feature.

▶ Regular BH geometries are ad hoc modifications which
respect the limiting curvature hypothesis

▶ The black hole singularity is replaced by a regular piece of de
Sitter space.

▶ Typically come with two spacetime horizons: an (outer) event
horizon and an (inner) Cauchy horizon.

▶ Global hyperbolicity is hampered by the presence of a
“quantum" generated Cauchy horizon: is the CH stable?
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Limiting curvature hypothesis: de Sitter core
Early works by Sakharov (1966), Frolov, Markov, Mukhanov (1989), Dimnykova (1992)
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RN
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CH singularity

▶ Poisson and Israel,
1989, 1991

▶ Ori’s model
▶ AB, Droz, Morsink,

Israel
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Mass-inflation

The behavior of the curvature invariants near the Cauchy horizon is
rather insensitive to the details of the local fields trapped inside the
event horizon. The rate of divergence of the Coulomb component
of the Weyl curvature Ψ2 ≡ Cµνρσlµmνm̄ρnσ, can then be
characterized by the anomalous dimension of the instability

ν = d ln |Ψ2|
d ln v

. (1)

In the limit v → ∞, Ψ2 ∼ v−p eκ− v, entailing that the anomalous
dimension behaves as ν ∼ κ− v − p. Since Ψ2 ∝ M(r, v) this
effect has has been dubbed mass-inflation.
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An exact MI solution

A generic spherically symmetric line element can always be written
as ds2 = gabdxadxb + r2dΩ2, a, b = 0, 1, where r = r(xa) is the
radius of the 2-spheres with xa being constant. It is convenient to
introduce a generalized Schwarzschild mass function M(xa) by
means of the gradient of r(xa),

gab∂ar∂br = f(xa) = 1 − 2M(xa)
r

. (2)
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The taxonomy of different static black hole geometries is encoded
in the radial behavior of M(r). For a Schwarzschild black hole
M = m where m is the mass of the object at large distances
r ≫ m. In the physical picture proposed by Sakharov, a phase
transition to a false vacuum occurs at Planckian distances from
the center so that a de Sitter core eventually develops and
M(r) ∼ r3 for small r. An explicit model realizing such a phase
transition is the Hayward model where

M(r) = mr3

r3 + 2ml2
. (3)

Here l is a free parameter whose value should be fixed by the
underlying quantum gravity model.
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RBH from Asymptotic Safety

AS model of regular BH (Bonanno & Reuter, PRD (2000) At very
high energies the RG evolution of Newton’s constant reads

G(k) = G(k0)
1 + ω G(k0) [k2 − k2

0]
(4)

which, upon assuming k ∼ 1/d(P ), d(P ) =
∫

C
√

|ds2| we obtain

G(r) = G0 r3

r3 + ω̃ G0 [r + γG0M ] (5)
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At large distances, the leading correction to Newton’s constant is
given by

G(r) = G0 − ω̃
G2

0
r2 + O( 1

r3 ). (6)

For small distances r → 0, it vanishes very rapidly:

G(r) = r3

γω̃G0M
+ O(r4) (7)
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Causal structure of AS BH
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MI in regular BH
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Ori’s model (PRL 1991)

In the Ori model the outgoing energy flux is modelled by a thin
pressureless null shell Σ which divides the spacetime in two regions
M±, inside (+) and outside (−) the shell. This shell acts as a
catalyst to trigger the divergence of the mass function. Assuming
spherical symmetry, the metric in each sector of spacetime can be
written as

ds2 = −f±(r, v±)dv2
± + 2drdv± + r2dΩ2 , (8)

where f± = 1 − 2M(r, v±)/r.

14 / 32



Israel-Barrabes formalism

The equality of the induced metric on Σ forces r to be the same
on M±. For this reason it is convenient to choose r as a
parameter (not necessarily affine) along the null generators
sµ

± = dxµ
±/dr = (2/f±, 1, 0, 0) of Σ. Einstein’s equations on each

sector of the spacetime can then be expressed in terms of the mass
function M(r, v) as

∂M

∂r
= −4πr2Tv

v ,
∂M

∂v
= 4πr2Tv

r . (9)
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Continuity of the flux across Σ requires

[Tµνsµsν ] = 0 (10)

where the square brackets indicate the “jump” of a scalar quantity
across the shell. This condition is consistent with the assumption
of Σ being pressureless. In terms of the lapse and mass-function,
we have

1
f2

+

∂M+
∂v+

= 1
f2

−

∂M−
∂v−

, (11)
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The functional dependence of the two is fixed by noting that the
position of the null hypersurface Σ in the two coordinate systems is

f+dv+ = f−dv− along Σ . (12)

In the following we shall use (12) to express all physical quantities
in terms of v ≡ v−.
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We now specify this general framework to the mass function
M(r, v) given in (3), setting

f± = 1 − 2m±(v±)r2

r3 + 2m±(v±)l2 . (13)

Since the shell moves light-like, we have f−dv− = 2dr, implying

Ṙ(v) = 1
2 − m− R2

R3 + 2 l2 m−
. (14)

Here the dot stands for derivative with respect to v and it is
understood that r and m± are v-dependent functions specifying
the position of Σ and the mass density.
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Combining eqs. (11) and (12) furthermore gives a differential
equation for the mass function

m′
+(v)

(2l2m+(v) + R(v)3) (2m+(v) (l2 − R(v)2) + R(v)3)

= m′(v)
(2l2m(v) + R(v)3) (2m(v) (l2 − R(v)2) + R(v)3)

= 1
2 (2l2m(v) + R(v)3)2 m′(v)

(
dR(v)

dv

)−1
(15)

The system (14) and (15) is a coupled system of non-linear
differential equations encoding the evolution of r(v) and m+(v).
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The boundary condition at the event horizon is determined by the
Price’s tail behavior so that in the past sector of the shell the mass
function m−(v) can be written (in the optical geometric limit) as

m−(v) = m0 − β

(v/v0)p
(16)

where p = 2(4ℓ + 1) for a multipole of order ℓ. It is possible to
show that (always in the limit v → ∞)

m+ = −3βpr0v−p−1

32κ02l2m03 − 3βr0
3v−p

8κ0l2m02 − r0
3

2l2
(17)

where κ0 > 0 is the surface gravity at the CH.
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K = RαβγδR
αβγδ is singular!
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A power law behavior replaces the exponential one
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Strength of the singularity: original PI model

If we indicate with v+ the advanced coordinate in the future sector
of the shell, at large values of v+ the metric near the CH reads

ds2 ≈ 2dv+
r

(rdr + m+(v+)dv+) + r2dΩ2. (18)

The coordinate u defined by

du = (rdr + m+(v+)dv+) (19)

is regular at the CH and the metric becomes

ds2 ≈ 2dv+du

r
+ r2dΩ2 (20)

which is manifestly regular at the CH
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Strength of the singularity
▶ Therefore the singularity of the CH already in the classical

case appears to be rather weak because it is possible to find a
coordinate system where the metric is regular.

▶ This fact has profound consequences: that the mass-inflation
singularity does not satisfies the necessary conditions to be
strong in the Tipler sense.

▶ A null singularity is said to be strong according to Tipler if
there exists at least one component of the Riemann tensor
that in a parallelly propagated frame the twice integration
with respect to the affine parameter τ does not converge

▶ The physical meaning of this requirement is that the tidal
distorsion is not finite as an observer crosses a strong scalar
singularity. A measure of the latter quantity can be obtained
by twice integrating the tidal acceleration, as provided by the
square of the Weyl curvature.
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Strength of the singularity

In the case of the standard MI scenario one finds

CαβγδCαβγδ ∝ 1
V 2(log(−V ))2p

(21)

where V ∝ −e−k0v is a Kruskal coordinate adapted to the inner
horizon and V ∝ τ in this case. The tidal distorsion is obtained by
twice integrating (21) which is therefore finite. It has further been
argued by Ori that this behavior could be sufficient to determine a
C1 extension of the spacetime along the CH.
However, according to Krolak (21) is still a strong singularity, as
the expansion of the congruence is divergent (Krolak 1987). In
fact in this case if we we integrate the Riemann-Christoffel tensor
only once, the integral does not converge on the singularity
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Strength of the singularity

In the case of a regular BH the divergence of the Weyl curvature is
further weakened. In particular we finds

CαβγδCαβγδ ∝ (log(−V ))3p (22)

which is directly integrable. At variance with the original
Poisson-Israel model, the singularity produced at the CH in regular
black holes is Krolak weak: not only the volume of the congruence
(Tipler weak) but also the expansion does not diverge (negatively)
at the CH. Therefore this results further support the possibility
that a C1 extension of the spacetime beyond the singularity is
possible for regular black holes.
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Including the Hawking radiation
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Promoting the temperature and horizon area to functions of v and
using the adiabatic approximation the mass-loss of the geometry
can be computed from

∂m(v)
∂v

= −π2

30 T (v)4 A(v) ,

where the area of the event horizon is approximated dynamically
from the location of the apparent horizon in. The previous equation
turns into a closed equation determining the v-dependence of m.
The late time behavior can be determined analytically,

m(v) ≃ mcr + 10935 l4 π

8v
+ O(v−3/2) .

27 / 32



the strength of the Singularity is universal!

C2
∣∣∣
Σ

= 19683 v6

4096 m10
cr

, K|Σ = 59049 v6

4096 m10
cr

.
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Geodesic Equation

In order to determine the geodesic structure of the spacetime, we
consider the motion of radially infalling observers and compute the
relation between the coordinate v and the observer’s proper time
τ . The v-component of the geodesic equation is

v̈ = −1
2

∂f

∂r
v̇2 ,

where the dot represents a derivative with respect to proper time.
The normalization for the four-velocity of the radial observer
furthermore supplies the relation

L = 1
2(fv̇2 − 2ṙv̇) = ϵ

2 . (23)

with ϵ = 0, 1 for lightlike or timelike geodesics, respectively.
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Geodesic equation
For a static geometry where f is independent of v,

∂L

∂v̇
= const

is conserved along geodesic motion. To understand the
implications of the curvature singularities induced by the late-time
attractor we solve these equations for timelike geodesics close to
the Cauchy horizon. We first note that near the inner horizon

− 1
2

∂f

∂r
≃ κ− > 0 .

and therefore
τ = 1

κ−
e−κ−v + const .

The important insight from this result is that a massive observer
can reach the singularity at v = ∞ in finite proper time.
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Geodesic completeness

In the presence of Hawking radiation this analysis is radically
altered though. In this case the late-time structure of spacetime is
given by an extremal black hole where κ− = 0. One finds the
linear relation

τ = cv + const .

with c an integration constant. The crucial difference is that the
timelike geodesic requires an infinite amount of proper time to
reach v = ∞.
Is the spacetime geodesically complete?
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Conclusions

▶ Regular BH in spherical symmetry have Krolak weak
singularities

▶ The spacetime can be extended beyond the CH
▶ If the backreaction of the Hawking radiation is included, the

spacetime could be geodesically complete
▶ Future work: extension to the rotating case
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