LUNA-SHADES/STELLA

Background in underground experiments

Low Background @ LNGS

Rare processes measurement @ LNGS:

- neutrino experiments
- dark matter
- neutrinoless double beta decay

Rare processes \rightarrow **deep underground** to reduce the background from cosmic rays

Experiments require:

- selection of radio-pure materials
- techniques for **shielding** against environmental backgrounds

Main motivation for a Low Background Techniques Laboratory

1) STELLA

SubTErranean Low Level Assay

• Material screening:

measure α, β, γ background spectra to evaluate material radioactivity

- γ spectroscopy
- Liquid scintillation counting (α,β) and α spectroscopy

1) STELLA

- Liquid scintillation counting using ¹⁴C and ³H samples
- glass bottle filled with liquid scintillator
- β decay (continuum spectrum) detected by PMTs

Background

The experiments require precise knowledge of:

- External background: flux of
 - gammas
 - \circ neutrons
 - muons
- Internal background from the detector itself

```
Hands-On activity:
1. γ background → LUNA 400 kV
2. neutron background → LUNA MV
```

LUNA 400 kV

Laboratory for Underground Nuclear Astrophysics

- 400 kV accelerator \rightarrow beams of **protons** and **helium**
- both **solid** and **gaseous** targets
- Investigate nuclear fusion reactions in stars

Low cross-sections \rightarrow Low background needed

LUNA 400 kV

- Nuclear reactions between beam and target emit photons, detected by <u>High Purity Germanium</u> detectors (HPGe)
- Energy deposit in semiconductor detectors → E-H pairs → current signal

Lead passive shielding to decrease environmental background Secondary radiation usually created in the shielding itself is reduced due to the lower cosmic muonic component

+

Copper close to the detectors to further reduce it (*e.g.* Bremsstrahlung of electrons interacting in Lead since high Z)

8

²⁰⁸TI 2614 keV gamma decay from ²³²Th radioactive decay chain

Calibration = find relation between channel and energy

2) Gamma background spectra comparison

3) LUNA MV

- LUNA 400 kV upgrade: 3.5 MV accelerator for beams of **protons**, **Helium** and **Carbon**, both for solid and gaseous targets
- Study the key reactions of Helium and Carbon burning, and the *neutron-source reactions*, which produce neutrons to create elements heavier than Iron
- Hosted in a **concrete infrastructure**, 80 cm thick
- Study **neutrons** produced in scattering events allows to find the reaction cross-section

- **nuclear fusion reactions** in stars also produce neutrons via (α, n) reactions
- Use the same detectors that will study the beam to measure **natural neutron background**
- ³He proportional counters to measure **thermal** neutron background:

$$n + {}^{3}He \rightarrow p + {}^{3}H$$
 Q=764 keV $E_{p} = 573$ keV, $E_{3H} = 191$ keV

 \rightarrow ionisation and excitation of ³He by p and ³H \rightarrow charge signal proportional to the deposited energy

 Need to shield LUNA MV detector from background neutrons

 \rightarrow **borated-polyethylene** shield around the proportional counter to **slow down** and **capture** n

• Effect of borated-polyethylene (BP) on surface neutron background

16

Going underground is really useful :)

