Data analysis and interpretation of UHECR measurements by the Pierre Auger Observatory

Marta Bianciotto, Nadine Bourriche, Shayoni Panja

04/10/

Gran Sasso PhD Autumn School

What are UHECRs?

- UHECRs charged particles that exceed energies of 10e17 eV
- They can be protons or heavier nuclei
- Detected by the Pierre Auger Observatory

What is SimProp?

• It is a Monte Carlo code used to simulate the propagation of UHECRs

Protons:

- We assume a pure composition of protons at the source
- We normalise the simulated spectrum using the energy at the ankle
- We plot the spectrum for different values of gamma and Emax

Neutrino Spectra:

- pp and py interactions produce pions
- charged pions decay into muons and muon neutrinos

Proton and neutrino spectra for different source evolution models:

m = 0 no source evolutionm = 3 following star formation rate evolutionm = 5 following AGNs evolution

(1+z)^m

Iron:

10⁻¹⁴

15.5

16 16.5 17

17.5

18

18.5 Log(E/eV)

Iron and neutrino spectra for different source evolution models:

m = 0 no source evolutionm = 3 following star formation rate evolutionm = 5 following AGNs evolution

(1+z)^m

Proton vs Iron

Iron neutrinos

8

Composition

- The position of the shower maximum Xmax is the most accurate mass estimator
- The generalized Gumbel distribution is used to describe the statistics of the Xmax:

$$\mathcal{G}(z) = rac{1}{\sigma} rac{\lambda}{\Gamma(\lambda)} \left(e^{-\lambda z - \lambda e^{-z}}
ight); \qquad z = rac{x - \mu}{\sigma}$$

We used Gumbel ROOT C++ library, which allows also to consider the detector effect

Spectrum of Proton and convoluted spectrum of Proton at 19.75

Spectrum of Iron and convoluted spectrum of Iron at 19.75

First two moments of the Xmax distribution for proton and iron as a function of the Log(E/eV)

First moment of the distribution (<Xmax>): Fe interacts higher in the atmosphere (lower Xmax)

Second moment of the distribution (σ Xmax): Fe Xmax has less shower to shower fluctuations ¹¹

Outlook:

- Simulations with higher statistics
- Compute source emissivity
- Include mixed composition at injection
- Study <Xmax> and σ Xmax for mixed composition
- Study <Xmax> and σ Xmax for different hadronic models

Thank you!!

Back up slides start here:

Loss lengths for proton and iron:

