UHECR Experiments

1

Michael Unger (KIT)

September 28 2023, Gran Sasso PhD Autumn School

UHECR Experiments

Michael Unger (KIT)

part 1: air showers physics
part 2: air shower detection

September 28 2023, Gran Sasso PhD Autumn School

Particle Cascade in the Atmosphere / Air Shower

Particle Cascade in the Atmosphere / Air Shower

=> Complicated Coupled particle transport through atmosphere

> numerical solutions or Thonte Carlo

e.g. <u>CORSINA</u> (dev. at IAP!)

electrons, positr https://www-

$E=10^{12}\;{\rm eV}$

photon

drons; height: 30 km, width: \pm 5 km uons ha zeuthen.desy.de/ electrons, positrons, gammas mu https://www-zeuthen.desy

$E=10^{13}\;{\rm eV}$

photon

土 5 km width: ght: 30 km gammas n electrons, positr https://www-

 $E=10^{14}~{\rm eV}$

photon

± 5 km vidth: electrons, posi https://wv

 $E=10^{15}\;{\rm eV}$

photon

5 km vidth: electrons

Atmosphere

- · height above sea level h
- · air density g(h)
- · vertical depth Xv

$$X_{v} = \int_{v}^{\infty} S(h') dh' \quad [x_{v}] = g(cm^{2} \Rightarrow "grammagc")$$

- isothermal atmosphere:
 S(h) = S. e^{-h/ho}
 X_V = X₀ e^{-h/ho}
- X. ~ 1030 glam2 at sea level

• scale height ho \approx 8.4 km at sea level , \approx 6.4 km high altitudes above has 10 km

altitude (km)	vertical depth (g/cm ²)	(10^{-3} g/cm^3)	Molière unit (m)	Cherenkov threshold (MeV)	Cherenkov angle (°)
40	3	3.8×10^{-3}	2.4×10^4	386	0.076
30	11.8	1.8×10^{-2}	5.1×10^{3}	176	0.17
20	55.8	8.8×10^{-2}	1.0×10^3	80	0.36
15	123	0.19	478	54	0.54
10	269	0.42	223	37	0.79
5	550	0.74	126	28	1.05
3	715	0.91	102	25	1.17
1.5	862	1.06	88	23	1.26
0.5	974	1.17	79	22	1.33
0	1032	1.23	76	21	1.36

h

· slout depth:

$$X = \int_{e}^{\infty} S(h(e)) de'$$

- · Zenith angle 0 1/2 = cos 0
- · glat atmosphere approximation for 0 \$65°
 - $X = X_v / \cos \theta$
- · horizontal thickness of curved atmosphere:

X(0=30°)≈ 3.5·104 g/m2

	planar		spherical	
zenith angle	distance	slant depth	distance	slant depth
degree	km	g/cm ²	km	g/cm ²
0	112.8	1036.1	112.8	1036.1
30	130.3	1196.4	129.9	1196.0
45	159.6	1465.3	158.2	1463.7
60	225.7	2072.2	220.1	2065.3
70	329.9	3029.4	310.7	3003.9
80	649.8	5966.7	529.0	5765.9
85	1294.6	11887.9	770.9	10572.1
89	6465.0	59367.2	1098.3	25920.4
90	00	00	1204.4	36481.8

Table 1: Distances and slant depths in planar and spherical geometry, calculated with the Linsley parametrization of the U.S. standard atmosphere.

Electromagnetic Interactions

energy loss $\left\langle -\frac{dE}{dX}\right\rangle = \frac{E}{X_0}$

-> E(x)=E. e. ***.

 => electron radiation length in air :

 $X_0^{aiv} = 36.6 g/cm^2$

» critical energy in air:

Ecrit = 84 MeV

brensstrahlung

2 cet

pair production

- · charge radius (etp scattering):
 - $r_{\rm P} = 0.88 \cdot 10^{-15} \, {\rm m}$
- $= \overline{\sigma_{PP}} \approx (2r_P)^2 \Pi \approx 100 \text{ mb}$ $(b: "barn", \Lambda b = 10^{-28} \text{ m}^2)$
- inelastic cross section: Tinel = 500 500 and 1000 and 10000 and 1000 and 1000 and 1000
- · particle production: p+p → p+p + m.π* + n.π°
- · pion multiplicity: m≈ 2·n

Hadronic Interactions

• average air MASS: <= 14.6 (78.03% N, 20.35% 0, 0.33% kr)

· nucleon + nucleus interactions :

5(p+A) ~ A33 = geometrical size of nucleus with A spherically packed nucleons

· nucleus + nucleus interactions:

$$\overline{\sigma}(A_{A}+A_{2}) \approx \pi R_{0}^{2} \left(A_{A}^{4} + A_{2}^{4} - \delta\right)^{2} \left(\delta = 1.42, R_{0} = 1.47 \text{ fm}\right)$$

· Slander model of h+A scattering (see CRPP A6 and glander + Matthiae Nucl. Phys. B 21 (1570) 135)

Particle Cascade in the Atmosphere / Air Shower

Carlson + Oppenheimer 1937, Heitler 1954

Photon-induced Shower

• radiation keyth Xo in air: 37 g/cm2

$$\left\langle -\frac{dE}{dx} \right\rangle_{bray,min} = \frac{E}{x_0} \qquad \Leftrightarrow E(x) = E \cdot e^{-\frac{2}{3}x_0}$$

- splitting length d= (n2 · Xo E(d) = Eo /2
 Eit1→ Ei/2
 - $N_{i+1} \rightarrow 2$: N;

Carlon + Oppenheimer 1937, Heitler 1954

Photon-induced Shower

• radiation keyth Xo in air: 37 g/cm²

$$\left\langle -\frac{dE}{dX} \right\rangle_{brow, per} = \frac{E}{X_0} \quad \Rightarrow E(x) = E, e^{-\frac{3}{2}x}$$

- splitting length d= (n2 · Xo E(d) = Eo /2
 Eit1→ Ei/2
 - $N_{i+1} \rightarrow 2 \cdot N;$
- after n splitting lengths: • $X_n = n$ (n2 Xo • $N_n = 2^n = e^{X/xo}$
 - $E_n = E_0/N_n$

Carlon + Oppenheimer 1937, Heitler 1954

Photon-induced Shower

• radiation length Xo in air: 37 g/cm2

$$\left\langle -\frac{dE}{dX}\right\rangle_{brow,per} = \frac{E}{X_0} \longrightarrow E(X) = E, e^{-\frac{2}{X}}$$

- after n splitting lengths: • $X_n = n (n_2 X_0)$ • $N_n = 2^n = e^{X/X_0}$
 - $E_n = E_0/N_n$

Carlon + Oppenheimer 1937, Heitler 1954

Critical energy:

$$\frac{dErod}{dX}(Ecrit) = \frac{dEron}{dX}(Ecrit)$$
in air: 84 NeV

- · Shows development stops when En S Earit
 - $N_{max} = E_0 | E_{crit} = 10^{11}$

•
$$M_{max} = (n(E_0(E_{crit}))/(h2) = 37)$$

• $X_{max} = X_0 (n(E_0(E_{crit})) = 340 g(cm^2))$

• hadronic cascade stops when $\lambda int = \lambda Aec \quad \Pi^+ \longrightarrow \mu^+ V_{\mu}$ $(\lambda dec = S \forall CC) \quad \Pi^- \longrightarrow \mu^- \overline{v}_{\mu}$ $\rightarrow critical energy \quad \mathcal{E}_{\Pi} \approx \Lambda O GeV = E_n \implies neit = (n (E_{0}/E_{\Pi})/(n \Pi)$ • $N_n = (\frac{2}{3} \Pi)^n$

$$N_{\mu} = N_{n_{crit}} = (E_{ET})^{\beta}$$

$$\begin{array}{c} \text{Lith} \quad \boxed{P = \frac{6.35\pi}{Gn}} = 1 - \frac{(n.32)}{Gn} = 1 - \frac{(h.32)}{Gn} \approx 1 - \frac{0.18}{Gn} \\ \approx 0.9 \quad \text{for } 11 = 50 \end{array}$$

e.g. Nm = 108 for Eo=1013eV and M= 50

Proton-induced Shower

estimate of shower maximum:

- phytons produced in TT decays after first interaction:

Proton-induced Shower

estimate of shows maximum:

- photons produced in π° decays after first interaction:
 →11 π² with E=Eo/M ⇒ 2.→1 photons with Ex=Eo/N/2
- $2 \cdot \frac{1}{3} M$ electromagnetic showers starting at $\{x_i\} = \lambda p$

$$\langle X_{max}^{P} \rangle = \lambda_{P} + X_{max}^{V} \left(E^{\pm} \frac{E_{0}}{2\pi} \right)$$

$$\Rightarrow \left(\left\langle X_{max}^{p} \right\rangle = \lambda_{p} + X_{p} \left(u \left(\frac{E_{o}}{2 \cdot 11 \cdot \varepsilon_{c}} \right) \right)$$

Proton-induced Shower

estimate of shower maximum:

- $2 \cdot \frac{1}{3} \Pi$ electromagnetic showers starting at $\langle x_{i} \rangle = \lambda \rho$ $\langle X_{max}^{m} \rangle = \lambda \rho + X_{max}^{M} (E = \frac{E_{0}}{2 \Pi})$

$$\Rightarrow \left\{ \left\langle X_{max}^{P} \right\rangle = \lambda_{P} + X_{D} \left(\ln \left(\frac{E_{o}}{2 \cdot r \cdot \epsilon_{c}} \right) \right) \right\}$$

=> Xmax distribution

Nucleus-induced Showser

Superposition model (E,A) + air ->X = A. (E/A,1) + air ->X

Nucleus-induced Shower

Superposition model (E,A) + air ->X = A.(E/A,1) + air ->X

-> superposition of 12 Ntair shours from 4 Autair interactions: 7N@X1, 1N@X2, 2N@X5, 2N@X4

Nucleus-induced Shower

010

Superposition model $(E_1A) + air \rightarrow X \cong A \cdot (E/A, A) + air \rightarrow X$

Superposition theorem 3. Engl deal. PRD 1832
if average number of participating nucleans in projectile Atain interactions

$$\langle N_A \rangle = A \frac{\lambda_A}{\lambda_P}$$
 $\langle N_A \rangle = \sum n P(n)$
then probability of depth of interaction of nucleons
 $\frac{dP_A}{dX} = \frac{\lambda_P}{\lambda_P} e^{-\frac{N_P}{\lambda_P}}$
interaction of nucleons

0

$$\rightarrow p(x_{i+1}-x_i) \sim e^{-\frac{X_{i+1}-X_i}{\lambda_{AK}}}$$

-> superposition of 12 Ntair showers from 4 Autair interactions: 7N@X1, 1N@X2, 2N@X3, 2N@X4

Nucleus-induced Showser

• number of means: $N_{\mu} = A \cdot \left(\frac{E_0/A}{\epsilon_{T}}\right)^{\beta} = \left(\frac{E_0}{\epsilon_{T}}\right)^{\beta} A^{1-\beta}$ e.g. $\Pi = 50, \beta = 0.9$ $\rightarrow N_{\mu}(\pi) | N_{\mu}(1) = 56^{0.1} = 1.5$

• number of minons:
$$N_{\mu} = A \cdot \left(\frac{E_0/A}{\epsilon_{\pi}}\right)^{\beta} = \left(\frac{E_0}{\epsilon_{\pi}}\right)^{\beta} A^{1-\beta}$$
 e.g. $\Pi = 50$, $\beta = 0.5$
 $\Rightarrow \frac{N_{\mu}(sc)}{N_{\mu}(1)} = \frac{56^{0.1} = 1.5}{1.5}$
• energy in g.et.et: $E_{em} = E_0 - N_{\mu} \cdot \epsilon_{\pi}$ e.g. $E_{e} = \Lambda 0^{20} eV_{\mu} \Pi = 50$, $A = 1 \Rightarrow E_{em}[E_{e} \approx 31\%]$
 $A = 5c \Rightarrow E_{em}[E_{e} \approx 86\%]$

• number of mutans:
$$N_{\mu} = A \cdot \left(\frac{E_0/A}{\epsilon_{\pi \tau}}\right)^{\beta} = \left(\frac{E_0}{\epsilon_{\pi}}\right)^{\beta} A^{1-\beta}$$
 e.g. $H=50$, $\beta=0.9$
 $\Rightarrow \frac{N_{\mu}(s_{0})}{N_{\mu}(t)} = 56^{0.1} = 1.5$
• energy in g.e.i.e.: $E_{em} = E_{0} - N_{\mu} \cdot \epsilon_{\pi \tau}$ e.g. $E_{0} - N_{0} \cdot \epsilon_{\pi}$ e.g. $E_{0} - N_{0} \cdot \epsilon_{\pi}$

· Show maximum grow 1st intraction:

$$X_{max}^{A} = \lambda_{p} + X_{p} \left(u \left(\frac{E_{o}}{2 \cdot A \cdot \Pi \cdot \varepsilon_{c}} \right) \right)$$

A. 3 11 TS WITH E=E0/A/M ⇒ 2.A. 3 M 83 WITH E8=E0/A/N/2

$$\chi_{\text{max}}^{A}(E) = \chi_{\text{max}}^{P}(E/A)$$

• number of means:
$$N_{\mu} = A \cdot \left(\frac{E_0/A}{\epsilon_{\pi}}\right)^{\beta} = \left(\frac{E_0}{\epsilon_{\pi}}\right)^{\beta} A^{1-\beta}$$
 e.g. $\Pi = 50, \beta = 0.9$
 $\Rightarrow \frac{N_{\mu}(sc)}{N_{\mu}(1)} = 56^{0.1} = 1.5$
• energy in getie: $E_{em} = E_0 - N_{\mu} \cdot \epsilon_{\pi}$ e.g. $E_0 - N_{\mu} \cdot \epsilon_{\pi}$ e

$$X_{max}^{A} = \lambda \rho + X_{p} \left(m \left(\frac{E_{o}}{2 \cdot A \cdot M \cdot \varepsilon_{c}} \right) \right)$$

A. - 3 TI TS WILL E=E0/A/M => 2.A. - 3 M 83 WILL E8=E0/A/n/2

$$\chi_{mex}^{A}(E) = \chi_{max}^{P}(E/A)$$

how to measure the CR mass + energy with air showers

Measurement		primary CR	detector	
NeiNm	6-37	EoIA	SD	
Xmax, Eem	÷	E.A	FD/cD	
Een, Nr	ల	Eo, A	RD+SD	Zuhuluid
Ne, Np, Xmar, E	en +>	E. A	SD+FD	2lound
2	1			-1

Overconstrained => check hadronic interaction models

(SD: surface detector (particles FD: fluorescence detector CD: Cherenture detector RD: vadio detector)

UHECR Experiments

Michael Unger (KIT)

part 1: air showers physics
part 2: air shower detection

September 28 2023, Gran Sasso PhD Autumn School

F. Schröder, 2017

Air Shower Detection

Figure 2

Average (a) lateral and (b) longitudinal shower profiles for vertical, proton-induced showers at 10^{19} eV. The lateral distribution of the particles at ground is calculated for 870 g cm⁻², the depth of the Pierre Auger Observatory. The energy thresholds of the simulation were 0.25 MeV for γ and e^{\pm} and 0.1 GeV for muons and hadrons.

Particle Detectors

Ne(Np: e.g. KASCADE @ Campus North (1936-2015)

2		2	5	5	3		3	8	5	6	6	7	
2		1	1		5	7	15	12	11	11	7	٩	8
2	3	2	1	7	6	11	12	21	19	11	20	17	11
4			4	4	12	11	13	22	45	38	27	18	10
1	1	3	6	4	6 /	6	26	43	45	81	42	39	17
2	2	3	2	9	6	14	28	65	149	340	101	33	14
	4	3	7	6	8	11	21	41	113	156	92)	30	20
	2		5	4	11	11	19	33	48	69	42	22	/16
1	2	3	1	6	6	14	15	22	23	22	29	14	19
1		4		2	8	6	14	19	16	22	13	9	14
	3	2		5	1	7	9	12	13	13	8	2	4
	2	3		3	4	3	6	7	5	6	9	5	7
1	1	2	2	4	2	2	3	2	2	4	4	5	1

schematically:

$$\binom{\text{Sscur}}{\text{Suco}} \sim \binom{1}{a} \binom{1}{b} \binom{\text{Nm}}{\text{Ne}}$$

> Ne and Non

highest energy event measured with an PD

Svs.E

Matthew

DIRECTION IN THE SKY-MAP

Fluorescence Telescopes

Air Fluorescence

- · N2 excitation by charged particles
- isotropic emission !!

· fluorescence yield Y~ f(S,T,H). E density 3 energy deposit temperature T in atmosphere humidity H

- tale of thumb: ≈ 3-4 photons/m/particle
 20 W light bulb
- · precise measurement in Cab

"Schmidt optics"

=) see separate file for animation

"Hybrid Detection" (e.g. fluorescence and particles)

Non-Imaging Cherenkov Detectors

85m spacing

Radio Detectors

polarization

shower = print charge => radial = from Q

T. Huege, Phys.Rept. 620 (2016) 1

geomagnetic effect

in air ! (Askanyan dominates in solids)

change excess (Asharyon effect

& 10% in air
Ê~Ne ⇒ radiated power ~ Ne ~ E2

Auger Coll., PRL 116 (2016) 241101

LOPES @WASCADE

SALLA @ Tunka

LPDA @ Auger

SALLA@ Auger

Some Results (E and A)

Energy Spectrum

Mass Composition

Mass Composition

hadronic interactions!

Detector Score Card (UHE)

	EAS variable	defector density	duty cycle	cost/unit	model dependence	maintenance/celibration
particle	Ne/Np	≈ A (um²	≈100 <i>%</i>	low medium	high	low
fluorescence	Een (Koner	≈ 1/2000 km²	<u>≤</u> 15%	high	(ھنگ	high
radio	Exen (Xuxx	1 ≥100/lum² Em Xents	≈100 <i>%</i>	low medium eledronics!	(164	دىم
Cherenkov	Eem/Xmcx	>100/lum2	≤15%	low medium	(aw	medium high

Future UHECR Experiments

UHECR Detection at Ground?

e.g. Global Cosmic-Ray Observatory (GCOS): $2 \times$ (Auger \times 10) (North and South)

 60000 km^2 , 2-2.5 km detector spacing, 15-22k stations, threshold 30 EeV

I. Maris UHECR22

UHECR Detection From Space?

e.g. POEMMA (JCAP 06 (2021) 007)

Future UHECR Experiments

Future UHECR Experiments

Thanks!