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Outline
• Definition of probability: frequentist vs Bayesian
• Bayesian inference
• Frequentist inference
• Hypothesis testing
• Significance level and discovery
• Upper limits
• Confidence intervals
• Modified frequentist approach: CLs
• Nuisance parameters
• Profile likelihood
• Asymptotic formulae
• Look elsewhere effect

• I assume you know basic tools like binomial, Poisson, Gaussian, ecc. 
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Definitions to probability
• Probability can be defined with different 

approaches
• The applicability of each approach depends  on 

the type of claim we are assigning a probability to
• A subjective approach quantifies the degree of 

belief/credibility of a claim, which may vary from 
subject to subject 

• For repeatable experiments, probability may be a 
measure of how frequently the claim is true in the 
unrealizable limit of infinite number of experiment

• Both above definition have some drawbacks
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Classical probability
• Probability determined by symmetry properties of a 

random device, only applicable to simple cases
• “Equally undecided” about event outcome, according 

to Laplace definition

𝑃 = 1/2

𝑃 = 1/10
𝑃 = 1/4

𝑃 = 1/6
(individual dice)

Probability: 𝑃 =
Number of favorable cases

Number of total cases Pierre Simon Laplace
(1749-1827)
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Kolmogorov axiomatic approach
• Let (Ω, 𝐹 ⊆ 2Ω, 𝑃) be a measure 

space, where: Ω = sample 
space, 𝐹 = event space, 𝑃 = 
probability measure

• Assume it satisfies:
1. 𝑃 𝐸 ≥ 0	 ∀𝐸 ∈ 𝐹
2. 𝑃 Ω = 1	 (normalization)
3. ∀ 𝐸!, ⋯ , 𝐸" ∈ 𝐹": 	𝐸# ∩ 𝐸$ = ∅

𝑃 ⋃#%!,⋯,"𝐸# = ∑#%!,⋯,"𝑃(𝐸#)

• The same formalism applies to 
different approaches to 
probability

Andrej Nikolaevič Kolmogorov

(1903-1987)
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Conditional probability
• 𝑃(𝐴|𝐵) is the probability of 𝐴, given 𝐵, i.e.: that an 

event known to belong to set 𝐵 also belongs to set 𝐴:
– 𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)/𝑃(𝐵)
– Notice that:
– 𝑃(𝐴|Ω) = 𝑃(𝐴 ∩ Ω)/𝑃(Ω)

• 𝐴 is said to be independent
of 𝐵 if:
– 𝑃(𝐴|𝐵) = 𝑃(𝐴)

• If 𝐴 is independent of 𝐵,
then 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

• à If 𝐴 is independent on 𝐵, 𝐵 is independent on 𝐴

Ω

A B
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PDF and independent variables
• Probability density for continuous case: =

!>
=?=@

= 𝑓(𝑥, 𝑦)

• 1D projections: A
𝑓( 𝑥 = ∫)*

+*𝑓 𝑥, 𝑦 d𝑦

𝑓, 𝑥 = ∫)*
+*𝑓 𝑥, 𝑦 d𝑥

(marginal distributions)

• We saw that 𝐴 and 𝐵 are 
independent events if:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) 𝑃(𝐵)
• Applying in the following case:

𝐴 = {𝑥ʹ: 𝑥 < 𝑥ʹ < 𝑥 + 𝛿𝑥}
𝐵 = {𝑦ʹ ∶ 𝑦 < 𝑦ʹ < 𝑦 + 𝛿𝑦}

• We define that 𝑥 and 𝑦 are
independent variables if:

            𝑓 𝑥, 𝑦 = 𝑓((𝑥)𝑓,(𝑦)
𝑥

𝑦

𝐴

𝐵
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𝛿𝑃(𝑥, 𝑦)

𝛿𝑃(𝑥)

𝛿𝑃(𝑦)



Law of large numbers
• The number of success events 𝑛 in 𝑁 repeated random 

extractions follows a binomial distribution
• The frequency of favorable cases is just 𝑛/𝑁

• ∀𝜀	 lim
-→*

𝑃 "
-
− 𝑝 < 𝜀 = 1
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It is a consequence of 
general probability 
laws. It will be used 
as foundation for 
frequentist probability, 
but holds for any 
approach to 
probability



The Bayes theorem

𝑃 𝐴 𝐵 = !(#∩%)
!(%)

	,  𝑃 𝐵 𝐴 = !(#∩%)
!(#)

𝑃 𝐴 𝐵 𝑃 𝐵 = 	𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃(𝐵)
• 𝑃(𝐴): prior probability
• 𝑃(𝐴|𝐵): posterior probability
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Thomas Bayes (1702-1761)



Bayesian posterior probability
• Bayes theorem allows to define a probability about 

hypotheses or claims 𝐻 that not related random 
variables, given an observation or evidence 𝐸:

𝑃 𝐻 𝐸 =
𝑃 𝐸 𝐻 𝑃(𝐻)

𝑃(𝐸)
• The Bayes rule allows to define a rational way to

modify one’s prior degree of belief once some
observation is known

• 𝑃(𝐻): prior probability, degree of belief before 
evidence

• 𝑃(𝐻|𝐸): posterior probability, degree of belief given 𝐸
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Subjective probability
• Expresses one’s degree of belief that a claim is true

– How strong? How much would you bet? 
– Applicable to all unknown events/claims, not only repeatable 

experiments
– Different individuals may have a different opinion/prejudice

• Bayes theorem provides a prescription about how subjective 
probability should be modified after learning about some 
observation/evidence
– The prior is an unavoidable subjective element of Bayesian 

probability
– The more information we receive, the more Bayesian probability is 

insensitive on prior subjective prejudice, except for pathological 
priors
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Bayes th. example: muon fake rate
• A detector identifies muons with high efficiently, 𝜀 = 95%
• A small fraction 𝛿 = 5% of pions are incorrectly identified as 

muons (“fakes”)
• If a particle is identified as a muon, what is the probability it is 

really a muon?
– The answer also depends on the composition of the sample!
– i.e.: the fraction of muons and pions in the overall sample

This example is usually 
presented as an epidemiology 
case

Naïve answers about fake 
positive probability may often be 
wrong! 
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Purity and Bayes theorem
• Using Bayes theorem:

– 𝑃(𝜇|+) = 𝑃(+|𝜇) 𝑃(𝜇) / 𝑃(+)

• Where our inputs are:
– 𝑃(+|𝜇) = 𝜀 = 0.95, 𝑃(+|𝜋) = 𝛿 = 0.05

• We can decompose P(+) as:
– 𝑃(+) = 𝑃(+|𝜇) 𝑃(𝜇) + 𝑃(+|𝜋) 𝑃(𝜋)

• Putting all together:
– 𝑃(𝜇|+) = 𝜀𝑃(𝜇)/(𝜀𝑃(𝜇) + 𝛿 𝑃(𝜋))

• Assume we have 𝑃(𝜇) = 4% of muons and 𝑃(𝜋) =
96% of pions, we have:
– 𝑃(𝜇|+) = 0.95×0.04/(0.95×0.04 + 0.05×0.96) ≅ 0.44

• Even if the selection efficiency is very high, the low 
sample purity makes 𝑃(𝜇|+) lower than 50%.

E0
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E2

E3

En
...

... ...

...

Ω

A1

A3

A2
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...

...

...

𝐸0 = ‘ + ’, 𝐴𝑖 = 𝜇, 𝜋

Law of total 
probability

normalization
term

+ denotes a positive id
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Before any muon id. information

Muons: 𝑃(𝜇) = 4%

Pions: 𝑃(𝜋) = 96%
All particles:
𝑃(Ω) = 100%
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After the muon id. measurement

Muons: 𝑃(𝜇) = 4%

Pions: 𝑃(𝜋) = 96%

𝑃(+|𝜇) = 𝜀 = 95% 𝑃(−|𝜇) = 1 − 𝜀 = 5%

𝑃 − 𝜋 = 1 − 𝛿
= 95%

𝑃(+|𝜋) = 𝛿 = 5%

𝑃(+) = 8.6%

𝑃(−) = 91.4%
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𝑃 𝜇 + =
𝜀𝑃(𝜇)

𝜀𝑃 𝜇 + 𝛿𝑃(𝜋)



Bayesian approach to unknowns
• ESP: extra-sensory perception:

prediction of extractions from a set of 
cards
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50% − 50% prior
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50% − 50% prior
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Prior: probability before evidence



50% − 50% prior
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Posterior: 
probability after 
evidence



Skeptical prior
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Suspicious prior
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Note on conspiracy theories
• Conspiracy theories claim that all scientific 

evidences are fakes as well!
• The main difference is that the priors chosen 

by conspiracy theorists are not based on 
common knowledge, but ignore most of 
known evidences in favour of pure inventions

• Scientific reasoning is closely related to the 
Bayesian approach, assuming that evidence 
is not discarded on purpose
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The likelihood function
• In many cases, the outcome of an experiment is modeled as a 

set of random variables 𝑥1, … , 𝑥𝑛 whose distribution depends on:
– intrinsic sample randomness (quantum physics is intrinsically 

random)
– detector effects (resolution, efficiency, …)

• Theory and detector effects are described in terms of some 
parameters 𝜃1, … , 𝜃𝑚, whose values are unknown

• The overall PDF, evaluated at our observation 𝑥1, … , 𝑥𝑛, is called 
likelihood function:

𝐿 = 𝑓(𝑥(, ⋯ , 𝑥); 𝜃(, ⋯ , 𝜃*)
• In case our sample consists of N independent measurements 

(collision events) the likelihood function can be written as:

𝐿 =B
+,(

-

𝑓(𝑥(
(+), ⋯ , 𝑥-

(+); 𝜃(, ⋯ , 𝜃*)
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Bayes rule and likelihood function
• Given a set of measurements 𝑥!, … , 𝑥", Bayesian posterior PDF 

of the unknown parameters 𝜃!, … , 𝜃/	can be determined as:
𝑃 𝜃(, … , 𝜃* 𝑥(, … , 𝑥) =

=
𝐿(𝑥(, … , 𝑥)|𝜃(, … , 𝜃*)𝜋(𝜃(, … , 𝜃*)

∫ 𝐿(𝑥(, … , 𝑥)|𝜃(. , … , 𝜃*. )𝜋(𝜃(. , … , 𝜃*. ) d*𝜃′

• Where 𝜋(𝜃!, … , 𝜃/)	is the subjective prior probability
• The denominator ∫𝐿 … 𝜋(… ) d/𝜃0 is a normalization factor
• The observation of 𝑥!, … , 𝑥"	modifies the prior knowledge of the 

unknown parameters 𝜃!, … , 𝜃/
• If 𝜃!, … , 𝜃/ is sufficiently smooth and 𝐿 is sharply peaked around 

the true values 𝜃!, … , 𝜃/, the resulting posterior will not be 
strongly dependent on the prior’s choice because 
𝜋(𝜃!, … , 𝜃/)	can be approximated to a constant, and cancels in 
the ratio
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Bayesian inference
• The posterior PDF provides all the information about the 

unknown parameters (let’s assume here it’s just a single 
parameter 𝜃 for simplicity)

𝑃 𝜃 𝑥 =
𝐿(𝑥|𝜃)𝜋(𝜃)

∫ 𝐿(𝑥|𝜃′)𝜋(𝜃′) d𝜃′
• Given 𝑃 𝜃 𝑥 , we can determine:

– The most probable value 
(best estimate)

– Intervals corresponding to a 
specified probability

• Notice that if 𝜋(𝜃)	is a constant,
the most probable value of 𝜃
correspond to the maximum of 
the likelihood function

𝑝 = 68.3%, as a 1σ 
interval for a Gaussian

δ δ

θ

P(
θ|

x)
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Choice of 68% prob. intervals
• Different interval choices are possible, corresponding to the 

same probability level (usually 68%)
– Equal areas in the right and left tails
– Symmetric interval
– Shortest interval
– …

• Reported as 𝜃 = c𝜃 ± 𝛿 (sym.) or 𝜃 = c𝜃)1&
+1' (asym.) 

𝑝 = 15.8%

𝑝 = 15.8%

Symmetric intervalEqual tails interval

All equivalent for a 
symmetric distribution
(e.g. Gaussian)

𝑝 = 68.3% 𝑝 = 68.3%

𝛿 𝛿

θθ

𝑃(
𝜃)

𝑃(
𝜃)
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Upper and lower limits

𝑝 = 90%

𝑝 = 90%

• A fully asymmetric interval choice is obtained setting one 
extreme of the interval to the lowest or highest allowed range

• The other extreme indicates an upper or lower limits to the 
“allowed” range

• For upper or lower limits, usually a probability of 90% or 95% is 
preferred to the usual 68% adopted for central intervals

• Reported as: 𝜃 < 𝜃up (90% 𝐶𝐿) or 𝜃 > 𝜃lo (90% 𝐶𝐿)

θθ

𝑃(
𝜃)

𝑃(
𝜃)
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Bayesian inference of a Poissonian
• Posterior PDF, assuming

the prior 𝜋(𝑠):

𝑃 𝑠 𝑛 =
𝑠"𝑒)2
𝑛! 𝜋(𝑠)

∫3
* 𝑠0"𝑒)2(

𝑛! 𝜋 𝑠0 d𝑠0

If is 𝜋(𝑠) is uniform:

𝑃 𝑠 𝑛 = 2)4*+

"!
• From which:

𝑠 = 𝑛 + 1,  𝕍ar 𝑠 = 𝑛 + 1

• For 𝑛 = 0, one may quote an 
upper limit at 90% or 95% CL:

• 𝑠 < 2.303 (90% CL)
• 𝑠 < 2.996 (95% CL)

𝑃(
𝑠|
𝑛)

𝑠

𝑛 = 5

𝑝 = 15.8%

𝑝 = 15.8%
𝑓(𝑠|𝑛) = max = 𝑛

𝑃(
𝑠|
0)

𝑠

𝑛 = 0

𝑝 = 10%

𝑓(𝑠|0) = 𝑒,-

zero observed
events
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Feedbacks and reliability
• The number of positive/negative feedbacks of an 

online seller can be assumed to to follow a binomial 
distribution

• If:
– a seller has 100% of positive feedbacks (8/8) and
– another one has 97% (97/100), which one is more 

reliable?
• The posterior a special case of the so-called Beta 

distribution, proportional to: 𝑝)(1 − 𝑝)-/):

𝑝 𝑥; 𝛼, 𝛽 =
𝑥pqr(1 − 𝑥)sqr

Γ(𝛼)Γ(𝛽)/Γ(𝛼 + 𝛽)
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Repeated use of Bayes theorem
• Bayes theorem can be applied sequentially for repeated independent

observations (posterior PDF = learning from experiments)

Prior

Conditioned posterior 1

observation 1

Conditioned posterior 2

observation 2

Conditioned posterior 3

observation 3

𝑃0 = Prior

𝑃1 ∝ 𝑃0⨉𝐿1

𝑃2 ∝ 𝑃1⨉𝐿2 ∝ 𝑃0⨉𝐿1⨉𝐿2

𝑃3 ∝ 𝑃0⨉𝐿1⨉𝐿2⨉𝐿3

Note that applying Bayes theorem directly
from prior to (obs1 + obs2) leads to the 
same result:

𝑃$./ = 𝑃0⨉𝐿$./ = 𝑃0⨉𝐿1⨉𝐿2 = 𝑃2

Composite likelihood = product of 
individual likelihoods
(for independent observations)
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Bayesian inference as learning
• Inference of a Binomial parameter as repeated application of 

Bayes rule for many Bernoulli extractions:
• 1 → 𝑝#+! = 𝑝#	×	𝑝
• 0 → 𝑝#+! = 𝑝#	×	(1 − 𝑝)
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Choosing the prior PDF
• If the prior PDF is uniform in a choice of variable, it won’t be uniform when 

applying coordinate transformation
• Given a prior PDF in a random variable, there is always a transformation that 

makes the PDF uniform
• The problem is: chose one metric where the PDF is uniform
• Harold Jeffreys’ prior: chose the prior form that is invariant under parameter 

transformation

𝜋(𝜃⃗) ∝ det ℐ(𝜃⃗), ℐ#$ 𝜃⃗ = 𝔼 6 78 9((⃗;=)
6=0

6 78 9((⃗;=)
6=0

• Some commonly used cases:
– Poissonian mean: 𝜋(𝜃) ∝ 1/ 𝜇

– Poissonian mean with background b: 𝜋(𝜃) ∝ 1/ 𝜇 + 𝑏
– Gaussian mean: 𝜋(𝜃) ∝ 1
– Gaussian standard deviation: 𝜋(𝜃) ∝ 1/𝜎
– Binomial parameter: 𝜋(𝜃) ∝ 1/ 𝑝(1 − 𝑝)

• Problematic with PDF in more than one dimension!

Note: in a previous 
Poissonian example 
we used 𝜋(𝜇) =
const., which is not 
Jeffreys’ prior!
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Lifetime estimate
• The probability distribution for a single measurement 

is:

𝑝 𝑡; 𝜏 =
1
𝜏
𝑒/0/2

• If we measure 𝑁 decay times, we can write the 
likelihood function as:

𝐿 𝑡(, … , 𝑡- 𝜏 =
1
𝜏-
B

+,(

-
𝑒/04/2 =

1
𝜏)
𝑒/∑456

7 04/2

• The posterior for 𝜏 is:

𝑝 𝜏 𝑡(, … , 𝑡- =
𝜋 𝜏 𝑒/∑456

8 04/2/𝜏-

∫𝜋 𝜏. 𝑒/∑4568 04/2./𝜏.-d𝜏′
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Lifetime estimate (cont.)
• The prior can be chosen in different ways:

– Uniform in 𝜏, 𝜋 𝜏 = const.
– Uniform in λ = 1/𝜏, 𝜋 𝜏 = 1/𝜏?

– Jeffrey’s prior, 𝜋 𝜏 = 1/τ
• All choices give as posterior a gamma distribution 

with different parameters (𝑘 = 𝑁, 𝑁 + 2, 𝑁 + 1)
– 𝑝 𝜏 𝑡!, … , 𝑡- = 𝐶 𝜏@𝑒)∑01'

2 B0/D

• The maximum of the PDF is at:

𝜏 = 𝜏456 = ∑456
8 04
7 = 𝑁 ̅𝑡/𝑘

• For large 𝑁, 𝜏456	tends to ̅𝑡, regardless of the prior 
choice
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Prior dependence: lifetime
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Prior dependence: lifetime
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Prior dependence: lifetime
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• Probability 𝑃 = frequency of occurrence of an event 
(success) in the limit of very large number (𝑁 → ∞) of 
repeated trials:

• Exactly realizable only with an infinite number of trials
– Conceptually may be  unpleasant
– Pragmatically acceptable by physicists

• Only applicable to repeatable experiments

Frequentist probability

Probability: 𝑃 = lim
Number of successes

N = Number of trials𝑁 → ∞
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Frequentist inference
• The probability of a possible range of values of an 

unknown parameter has no meaning in the 
frequentist approach
– Parameters are not random variables!

• Frequentist inference procedures determine a point 
estimate with its uncertainty interval that depend on 
the observed measurements

• The function that returns the central value given an 
observed measurement is called estimator. It 
contains no subjective element

• Point estimate and interval extremes are random 
variables due to the randomness of the observed 
data sample
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Frequentist coverage
• Repeating the experiment will result each time in a 

different data sample
• For each data sample, the estimator returns a different 

central value T𝜃
• An uncertainty interval [ T𝜃 − 𝛿, T𝜃 + 𝛿] can be 

associated to the estimator’s value T𝜃
• Some of the intervals contain the unknown true value 

of 𝜃, corresponding to a fraction equal to 68% of the 
times, in the limit of very large number of experiments 
(coverage)
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Coverage for frequentist inference
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The maximum-likelihood method
• The most adopted frequentist estimator consist of 

finding the “best fit” parameters that maximizes the 
likelihood function, known as maximum-likelihood 
estimator (ML)

• This estimator as close-to-optimal properties 
• The maximization can be performed analytically only 

in the simplest cases, and numerical maximization is 
required in most of realistic cases

• Minuit is historically the most widely used 
minimization engine in High Energy Physics
– F. James, 1970’s; rewritten in C++ and released 

under CERN’s ROOT framework
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Some estimator properties
• Consistency: for large number of measurements the estimator 

c𝜃 should converge, in probability, to the true value 𝜃.
– ML estimators are consistent

• Bias: the bias of a parameter is the average value of its 
deviation from the true value:

𝑏 𝜃 = c𝜃 − 𝜃 = c𝜃 − 𝜃

– ML estimators may have a bias, but the bias decreases with large 
number of measurements (if the fit model is correct…!)

– E.g.: in the case of the estimate of a Gaussian’s 𝜎2, the unbiased
estimate is the well known: 

9𝜎*+,-./0. =
𝑛

𝑛 − 1
9𝜎* =

1
𝑛 − 1

>
234

5

𝑥2 − 𝜇̂ * ML method
underestimates
the variance 𝜎2
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Efficiency of an estimator
• The variance of any consistent estimator is subject a lower bound

(Cramér-Rao bound):

𝕍 B𝜃 ≥
1 + 𝜕𝑏 𝜃𝜕𝜃

*

ℐ 𝜃 = 𝑉67

ℐ 𝜃 = 𝔼 895: ;
8;

*
= 𝔼 − 8%95: ;

8;%

• Efficiency can be defined as the ratio of Cramér-Rao bound and the 
estimator’s variance:

𝜀 B𝜃 =
𝑉67

𝕍ar B𝜃
– Efficiency for ML estimators tends to 1 for large number of measurements

lim
5→=

𝕍 B𝜃 = −
1

𝔼 𝜕*𝑙𝑛𝐿 𝜃
𝜕𝜃*

* ≅ −
1

T𝜕*𝑙𝑛𝐿 𝜃
𝜕𝜃* ;3>;

– I.e.: ML estimates have, asymptotically, the smallest possible variance

Fisher information

𝑏 𝜃 =	bias of θ
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Approx. maximum likelihood errors
• A parabolic approximation of −2ln 𝐿 around the 

minimum is equivalent to a Gaussian approximation
– Sufficiently accurate in many but not all cases

−2 ln 𝐿 =�
#%!

"
𝑥# − 𝜇 ?

𝜎?
+ const.

• Estimate of the covariance matrix from 2nd order 
partial derivatives w.r.t. the fit parameters at the 
minimum:

𝑉#$)! = �−
𝜕? ln 𝐿
𝜕𝜃#𝜕𝜃$ =4%E=4

• Implemented in Minuit as MIGRAD/HESSE method
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Asymmetric errors
• Another approximation alternative to the parabolic one may be 

to evaluate the excursion range of −2ln 𝐿.
• Error (𝑛𝜎) determined by the range around the maximum for 

which −2ln 𝐿 increases by +1 (+𝑛2 for 𝑛𝜎 intervals)

𝜃

−2 ln 𝐿

−2 ln 𝐿max

−2 ln 𝐿max+ 1

S𝜃 S𝜃 – 𝛿.S𝜃 – 𝛿,

• Errors can be 
asymmetric

• For a Gaussian PDF
the result is identical 
to the 2nd order 
derivative matrix

• Implemented in 
Minuit as MINOS 
function

1
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Measure a particle’s lifetime
• The probability distribution for a single measurement is:

𝑝 𝑡; 𝜏 =
1
𝜏 𝑒

?@/B

• And the likelihood function is

𝐿 𝑡4, … , 𝑡5; 𝜏 =
1
𝜏5 [

234

5
𝑒?@)/B =

1
𝜏5 𝑒

? ∑)*+
, @)/B

• Minimization gives:

𝜏̂ =
1
𝑛>234

5
𝑡2

• It can be demonstrated that this estimate is unbiased
• The distribution of 𝜏̂ is a gamma distribution with scale parameter 𝜏 and 

shape parameter 1:

𝑝 𝜏̂ = 𝜏̂*5𝑒?
DB
B/(𝜏*5 2𝑛 − 1 !)

• The square root of the variance is equal to: 
𝜎DB = 𝜏/ 𝑛

• This is also equal to the Cramer-Rao bound
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Extended likelihood function
• The likelihood function is the probability density of the sample 

(𝑥1, … , 𝑥𝑛) as a function of the unknown parameters (𝜃!, ⋯ , 𝜃/):

𝐿 =B
+,(

-

𝑓(𝑥(
(+), ⋯ , 𝑥-

(+); 𝜃(, ⋯ , 𝜃*)

• If the size 𝑁 of the sample is also a random variable, the 
extended likelihood function is usually used:

𝐿 = 𝑃(𝑁; 𝜃(, ⋯ , 𝜃*)B
+,(

-

𝑓(𝑥(
(+), ⋯ , 𝑥-

(+); 𝜃(, ⋯ , 𝜃*)

• Where 𝑃(𝑁; 𝜃!, ⋯ , 𝜃/)	is in practice always a Poisson
distribution whose expected rate is a function of the unknown 
parameters

• In many cases it is convenient to use – ln 𝐿 or – 2ln 𝐿: 

Σ! → Π!
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Signal extraction
• For Poissonian signal and background processes:

𝐿 𝑥#; 𝑠, 𝑏, 𝜃 =
(𝑠 + 𝑏)"𝑒)(2+F)

𝑛!
�
#%!

"

𝑓2𝑃2 𝑥#; 𝜃 + 𝑓F𝑃F(𝑥#; 𝜃)

Y
𝑓 = ^

^_`

𝑓 = `
^_`

→ 𝐿 = a!(#$%)

)!
 ∏+,(

) 𝑠𝑃 𝑥+; 𝜃 + 𝑏𝑃 (𝑥+; 𝜃)

• We can fit simultaneously s, b and θ minimizing:

− ln 𝐿 = 𝑠 + 𝑏 −^
+,(

)

ln 𝑠𝑃 𝑥+; 𝜃 + 𝑏𝑃 𝑥+; 𝜃 + ln 𝑛!

• Sometimes 𝑠 is replaced by 𝜇 𝑠0, where 𝑠0 is the 
theory prediction and 𝜇 is called signal strength 

constant!
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Example of ML fit

m (GeV)
2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

Ev
en

ts
 / 

( 0
.0

1 
)

0

20

40

60

80

100

• 𝑃𝑠(𝑚): Gaussian peak
• 𝑃𝑏(𝑚): exponential shape

Exponential decay parameter 𝜆, 
Guassian mean 𝜇 and standard 
deviation 𝜎 can be fit together 
with sig. and bkg. yields 𝑠 and 𝑏.

The additional parameters, 
beyond the parameters of 
interest (𝑠 in this case), 
used to model background, 
resolution, etc. are 
examples of nuisance 
parameters

Data

In the plot, data are 
accumulated into bins of a 
given width

Error bars, representing 
Poissonian uncertainty on 
each bin count, are not 
used in unbinned fits
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Neyman’s confidence intervals

• Scan the parameter 𝜃 range
• For a given 𝜃, compute an interval 

[𝑥1, 𝑥2] that contain a probability 
1 − 𝛼 equal to 68% (or 90%, 95%) 

• A choice of the interval is needed 
(ordering rule)

• Invert the confidence belt: for an 
observed value 𝑥, find the interval 
[𝜃1, 𝜃2] intersecting the belt

• A fraction 1 − 𝛼 of the experiments 
will measure x such that the 
corresponding [𝜃1, 𝜃2] “covers” the 
true value of 𝜃 (“coverage”)

• Note: the random variables are 
[𝜃1, 𝜃2], not 𝜃 !

Plot from PDG statistics review

Frequentist uncertainty intervals can be determined in an exact way:

α = significance level
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Simplest Gaussian case

μ = x ± σ
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𝑥

𝜇

1 − 𝛼 = 68%

• Assume a Gaussian 
distribution with unknown 
average 𝜇 and known 
𝜎 = 1

• The belt inversion is trivial 
and gives the expected 
result:
Point estimate 𝜇̂ = 𝑥,
[𝜇1, 𝜇2] = [𝑥 − 𝜎, 𝑥 + 𝜎]

• So, we can quote:



Binomial intervals
• Coverage may only approximate in case of discrete variables
• For a Binomial distribution the interval {𝑛min, … , 𝑛max} must ensure that: 

𝑃 𝑛min ≤ 𝑛 ≤ 𝑛max = >
535-./

5-01 𝑁!
𝑛! 𝑁 − 𝑛 ! 𝑝

5(1 − 𝑝)M?5 ≥ 1 − 𝛼

• For an observed 𝑛 = 𝑘, pick 𝑝lo and 𝑝up such 
that:

𝑃(𝑛 ≥ 𝑘 | 𝑁, 𝑝lo) = 𝛼/2
𝑃(𝑛 ≤ 𝑘 | 𝑁, 𝑝up) = 𝛼/2

• For 𝑛 = 𝑁 = 10, 𝑃(𝑁|𝑁) = 𝑝𝑁 = 𝛼/2, 
therefore:

𝑝lo = +2 𝛼/2 = 0.83	(68%𝐶𝐿), 0.74	(90%𝐶𝐿)	
• The approximate ML error estimate fails for 

𝑛 = 0, 𝑁 is:

𝑝̂ = "
-

,     𝜎 GH ≈
GH(!) GH)
-𝑛

𝑝
𝑁 = 10

1 − 𝛼 = 68%

𝑝	 = 	0.83

𝑝	 = 	0.17
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Clopper-Pearson coverage (I)
• CP intervals are often defined as “exact” in literature
• Exact coverage is often impossible to achieve for 

discrete variables

𝑝

𝑃
(c
ov
er
ag
e)

1 − 𝛼 = 68%

𝑁 = 10
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Clopper-Pearson coverage (II)
• For larger 𝑁 the “ripple” gets closer to 

the nominal 68% coverage

1 − 𝛼 = 68%
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Coverage for discrete variables
• If the true value is 𝑝 = 0 (similarly for 𝑝 = 1), the 

observed value is always 𝑛 = 0, therefore the 
confidence interval is [0, 𝑝up[

• The true value is therefore contained in the 
confidence interval with 100% probability instead of 
68% (or 90%, or whatever)

• This is against the definition of frequentist coverage, 
but it is unavoidable for discrete variable

• This feature is typical of cases with low number of 
count. Poissonian counting experiments also have 
this behaviour.

Luca Lista Gran Sasso Hands-On 2023



Likelihood for binned histograms
• It is often convenient to summarize data as binned histograms
• The number of entries 𝑛𝑖 in each bin follows a Poisson distribution
• The likelihood function is the product of Poisson probabilities whose 

expected number of entries depends on some unknown parameters: 
𝜇𝑖 = 𝜇𝑖(𝜃1, … , 𝜃𝑚)

• The function to minimize is −2 ln 𝐿:

−2 ln 𝐿 = −2 ln [
234

59./:

Poiss 𝑛2; 𝜇2 𝜃4, ⋯ , 𝜃L

= −2 ln [
234

59./: 𝑒?H) ;+,⋯,;; 𝜇2 𝜃4, ⋯ , 𝜃L 5)

𝑛2!

• The expected number of entries 𝜇𝑖 is often approximated by a 
continuous function 𝜇(𝑥) evaluated at the center 𝑥𝑖 of the bin, or more 
precisely by the integral of 𝜇(𝑥) over the bin interval

• Alternatively, 𝜇𝑖 can be a combination of other histograms 
(“templates”), e.g.: weighted sum of different simulated processes with 
yields as fit parameters

Luca Lista Gran Sasso Hands-On 2023



Minimum 𝜒2
• Number of entries are approximated Gaussian if they are 

sufficiently large, with standard deviation equal to 𝑛𝑖
• Minimizing −2ln𝐿 is equivalent to minimize Neyman’s 𝜒2:

𝜒? = �
#%!

"BCDE 𝑛# − 𝜇(𝑥#; 𝜃!, ⋯ , 𝜃/) ?

𝑛#

• Sometimes, the denominator 𝑛𝑖 is replaced (Pearson’s 𝜒2) by:
𝜇𝑖 = 𝜇 𝑥𝑖; 𝜃1, … , 𝜃𝑚

to avoid cases with zero or small 𝑛𝑖
• Analytic solution exists for linear or polynomial fits and other 

simple problems, but most of the cases are addressed 
numerically, as for unbinned ML fits
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Fit quality with 𝜒2 test
• The 𝜒2 of a fit with a Gaussian underlying model is distributed 

according to a known PDF:

𝑃 𝜒?; 𝑛 =
2)"/?

Γ 𝑛/2
𝜒")?𝑒)I&/?

• The value of the cumulative distribution at the fit 𝜒? = 𝜒̂? is 
called p-value :

𝑝 = 𝐶 𝜒̂?; 𝑛 = 𝑃(𝜒? > 𝜒̂?; 𝑛)
• 𝑝 is uniformly distribution between 0 and 1 if the fit model is 

correct, otherwise it peakes around zero
• The p-values are not the “probability of the fit hypothesis”, which 

would be a Bayesian probability
• For a generi ML fit, the minimum value of −2 ln 𝐿 cannot gives 

no information about fit quality. Taking a proper ration of 
likelihood functions can help if some conditions hold (Wilks’ 
theorem)

𝑛 is the number of degrees 
of freedom (n. of bins − n. 
of params.)
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Wilks’ theorem
• Consider a likelihood function from 𝑁 measurements:

𝐿 =�
#%!

-

𝐿 𝑥!
# , ⋯ , 𝑥-

# ; 𝜃!, ⋯ , 𝜃/ =�
#%!

-

𝐿 𝑥⃗#; 𝜃⃗ 	

• Assume that 𝐻0 and 𝐻1 are two nested hypotheses, i.e.: they can be 
expressed as:

𝜃⃗ ∈ Θ3, 𝜃⃗ ∈ Θ!,  with  Θ0 ⊆ Θ1. 
• If 𝐻0 is true, the following quantity, for 𝑁 → ∞, is distributed as a 𝜒2 with 

n.d.o.f. equal to the difference of Θ0 and Θ1 dimensionality: 

𝜒Q* = −2 ln
sup;∈S2∏234

M 𝐿 𝑥⃗2; 𝜃⃗ 	

sup;∈S+∏234
M 𝐿 𝑥⃗2; 𝜃⃗ 	

• E.g.: searching for a signal with strength 𝜇, ΘT: 𝜇 = 0, Θ4	: 𝜇 ≥ 0 we 
have the profile likelihood (supremum = best fit value):

𝜒Q*(𝜇) = −2 ln
sup;∏234

M 𝐿 𝑥⃗2; 𝜇, 𝜃⃗(𝜇) 	

supH<,;∏234
M 𝐿 𝑥⃗2; 𝜇U, 𝜃⃗ 	
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Binned likelihood ratio
• An alternative to the 𝜒2 method for histograms with small 

number of entries has been proposed with the following 
likelihood ratio, where the true values are replaced by bin 
contents (𝐻3: 	𝜇# = 𝑛#):

𝜒�
𝟐 = −2 ln∏+,(

)'()* � )+;�+
� )+;)+

= −2 ln∏+,(
)'()* a!,+�+-+

)+!
)+!

a!-+-+
-+ =

2∑+,(
)'()* 𝜇+ 𝜃(, ⋯ , 𝜃* − 𝑛+ + 𝑛+ ln

)+
�+ �.,⋯,�/

	

• The fit gives the same result as with a Poissonian likelihood, 
since a constant term has been added to the log-likelihood

• In addition, it provides goodness-of-fit information, and 𝜒J𝟐	is 
asymptotically distributed as a chi-squared with 𝑛 − 𝑚 degrees 
of freedom (Wilks’ theorem)

S. Baker, R. Cousins NIM 221 (1984) 437
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Hypothesis testing

Theory 
Model 1

Data

Theory 
Model 2

Which hypothesis is the most 
consistent with the experimental 
data?
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Bayesian approach
• Bayesian probability gives meaning to the probability 

that a hypothesis is true:

𝑃 𝐻( 𝑥 =
𝑃(𝑥|𝐻()𝜋(𝐻()

𝑃(𝑥)
• The ratio of probabilities for two hypothesis does not 

depend on 𝑃 𝑥 , and can be computed without 
considering all possible hypotheses:

𝑃(𝐻(|𝑥)
𝑃(𝐻�|𝑥)

=
𝑃(𝑥|𝐻()𝜋(𝐻()
𝑃(𝑥|𝐻�)𝜋(𝐻�)
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Bayes factors
• It is possible to introduce Bayes factor:

𝑃(𝐻!|𝑥)
𝑃(𝐻3|𝑥)

= 𝐵!/3(𝑥)
𝜋(𝐻!)
𝜋(𝐻3)

• In other words, this defines the posterior odds 𝑂!/3(𝑥)	as a 
function of prior odds 𝑜!/3:

𝑂!/3(𝑥) 	= 𝐵!/3(𝑥)	𝑜!/3
• In word:

posterior odds = Bayes factor × prior odds
• Bayes factor can be used to measure how favoured is one 

hypothesis against another, and, in the simplest cases, it is 
equal to the likelihood ratio

• Proposed range values are:
1−3: very weak evidence
3−20: positive evidence
20−150: strong evidence

> 150: very strong evidence
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In presence of parameters
• Bayes factors may depend on priors if parameters are present.
• Posterior for both hypothesis and parameters is:

𝑃(𝐻4, 𝜃4|𝑥) =
𝑃(𝑥|𝐻4, 𝜃4)𝜋(𝐻T,4, 𝜃4)

𝑃(𝑥)
• Priors can be decomposed as :

𝜋 𝐻4, 𝜃4 = 𝜋 𝜃4|𝐻4 𝜋(𝐻4)
• Hence:

𝑃 𝐻4 𝑥 =
∫𝑃 𝑥 𝐻4, 𝜃4 𝜋 𝐻4, 𝜃4 d𝜃4

𝑃 𝑥
=
𝜋(𝐻4) ∫𝑃 𝑥 𝐻4, 𝜃4 𝜋 𝜃4|𝐻4 d𝜃4

𝑃 𝑥

=
𝑃(𝑥|𝐻4)𝜋(𝐻4)

𝑃 𝑥
• The Bayes factor are defined as:

𝐵4/T 𝑥 =
𝑃(𝑥|𝐻4)
𝑃(𝑥|𝐻T)

=
∫𝑃(𝑥|𝐻4, 𝜃4)𝜋(𝜃4|𝐻4)d𝜃4
∫𝑃(𝑥|𝐻T, 𝜃T)𝜋(𝜃T|𝐻T)d𝜃T

• This introduces some dependency on priors in Bayes factors
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Frequentist: terminology
• Statisticians’ terminology is sometimes not very natural for physics 

applications, but it is more and more popular among physicists as well:
• 𝐻0 = null hypothesis

– Ex. 1: “a sample contains only background”
– Ex. 2: “a particle is a pion”

• 𝐻1 = alternative hypothesis
– Ex. 1: “a sample contains background + signal”
– Ex. 2: “a particle is a muon”

• α = significance level: probability to reject 𝐻1 if 𝐻0 is assumed to be 
true (error of first kind, false positive)
– 𝛼 = 1 – misidentification probability

• β = misidentification probability, i.e.: probability to reject 𝐻0 if 𝐻1 is 
assumed to be true (error of second kind, false negative)

– 1 – 𝛽 = power of the test = selection efficiency
• p-value: probability, assuming 𝐻0, of observing a result at least as 

extreme as the observed test statistic
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Cut analysis
• Selection (“cut”) on one (or more) variable(s):

– if 𝑥 ≤ 𝑥cut ⇒ signal
– else, if   𝑥 > 𝑥cut ⇒ background

xcut x

Efficiency (1 − α)

Mis-id probability (β)
α = area under

the red tail

Test statistic
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Efficiency vs mis-id
• Varying the applied cut on the test statistic both the 

efficiency and mis-id probability change

Mis-id prob. (𝛽)

Ef
fic

ie
nc

y
(1
−
𝛼)

0 1

1

0

𝑥 cut

Sometimes also referred to as ROC curve (Receiver Operating Characteristic)
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Performance comparison
• One test is preferable to another if, for the same level 

of efficiency (1 − 𝛼), it has lower mis-id probability (𝛽)

0 1

1

0

1 − 𝛼

β βʹ<

Note: 
sometimes 
ROC curves 
may also 
cross!
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Multivariate discrimination
• With multiple discriminating variables, the choice of the optimal 

selection is not always straightforward

x

y

x

y

x

y

𝑃𝑠(𝑥, 𝑦) = Gauss(𝑥; 0, 𝜎𝑥) × Gauss(𝑦; 0, 𝜎𝑦) , 𝑃𝑏(𝑥, 𝑦) = 𝛼 𝑒 − 𝛼𝑥 × 𝛽 𝑒 − 𝛽𝑦

• In many cases it’s convenient to find a single variable (test 
statistic) that ‘summarizes’ all the sample information
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The Neyman-Pearson lemma
• For a fixed significance level 𝛼, a selection based on the 

likelihood ratio gives the lowest possible mis-id probability 𝛽:

𝜆 𝑥 =
𝐿(𝑥|𝐻r)
𝐿(𝑥|𝐻�)

> 𝑘p
• The likelihood function can’t always be determined exactly, but 

we can construct test statistics that approximate the exact 
likelihood

• Machine-Learning algorithms like Neural Networks, Boosted 
Decision Trees and more are example of discriminators that 
may closely approximate the performances of the exact 
likelihood ratio approaching the Neyman-Pearson limit
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Projective likelihood ratio
• The likelihood function is approximated by the product of 

projective PDF in each variable

𝜆 𝑥 =
𝐿(𝑥r, ⋯ , 𝑥�|𝐻r)
𝐿(𝑥r, ⋯ , 𝑥�|𝐻�)

≈
∏��r
� 𝑓�(𝑥�|𝐻r)

∏��r
� 𝑓�(𝑥�|𝐻�)

• Exact only in case of independent variables, otherwise it has 
suboptimal performances

• The test statistic 𝜆 𝑥 may be improved if the variables are first 
rotated to eliminate correlation (principal component analysis)
– Find eigenvectors of the covariance matrix
– Note: uncorrelated variables are not necessarily independent

𝑥$, … , 𝑥%approximately 
considered independent 

variables
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Claiming a discovery
• Test our data sample against two 

hypotheses:
– 𝐻0: the data contains background 

only 
– 𝐻1: the data contains signal plus 

background
• Build a test statistic 𝜆 whose 

distribution is known under the two 
hypotheses

– Usually, 𝜆 tends to have large values if 
𝐻1 is true and small values if 𝐻0 is true, 
consistently with 𝜆 being the likelihood 
ratio 𝐿(𝑥|𝐻1)/𝐿(𝑥|𝐻0)

• Assessing the discovery is based 
on  the p-value, the probability that 𝜆
is greater or equal to than the 
observed value 𝜆obs

m
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Are data below more consistent 
with a background fluctuation 
or with a peaking excess?
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Significance
• The p-value is usually converted into an 

equivalent area of a Gaussian tail:

𝑝 =  
L

* 1
2𝜋

𝑒)(&/?d𝑥 = 1 − Φ(𝑍)

𝑍 = Φ)!(1 − 𝑝)

• If the significance level 𝑍 > 3 (“3σ”) one claims “evidence”
– 𝑝 < 1.349 ⨉ 10?X

• If the significance level 𝑍 > 5 (“5σ”) one claims “observation” 
– 𝑝 < 2.87 ⨉10?Y(discovery!)

• Again: the probability that background produces a large test statistic is 
not equal to probability of the null hypothesis (background only), which 
has only a Bayesian meaning

p-value

Z = 
significance 
level

Φ = cumulative of a 
normal distribution 
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Significance for Poisson counting
• If one measure a number of counts 𝑛 from an expectation 𝑠 + 𝑏, 

where 𝑏 is known exactly, one may estimate:
𝑠̂ = 𝑛 − 𝑏

• With an expected uncertainty:
𝜎2̂ = 𝜎"= 𝑠 + 𝑏

• If we assume 𝑠 = 0 (𝐻0), the significance level, in the Gaussian 
approximation, is:

𝑍 =
𝑠̂
𝜎2̂
=

𝑠̂
𝑏

• If 𝑏 is affected by uncertainty, this should be added in 
quadrature to 𝑏.

• For small number of counts, an asymptotic formula has been 
derived (motivation in the following slides):

𝑍 = 2 𝑠 + 𝑏 log 1 +
𝑠
𝑏
− 𝑠
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Upper limits
• If the result of a search is negative, we determine an excluded 

region in the parameter space

,θ
 =

 s

xmin ≤ x ≤ ∞

0
≤ 

s≤
 su
p

• Build a fully asymmetric Neyman
confidence belt based on the 
considered test statistic 𝑥

• Invert the belt, find the allowed 
interval:

𝑠 ∈ [𝑠1, 𝑠2] ⇒ 𝑠 ∈ [0, 𝑠��]
• Upper limit = upper extreme of the 

asymmetric interval [0, 𝑠NO]
• In case the observable 𝑥 is discrete

(e.g.: the number of events 𝑛 in a 
counting experiments), the 
coverage may not be exact
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The flip-flopping issue
• When to quote a central value or upper limit?
• A popular choice is:

– “Quote a 90% CL upper limit of the 
measurement if the significance is below 3σ; 
quote a central value otherwise”

– Upper limit or central interval chosen according to 
observed data

• This produces an incorrect coverage!
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“Flip-flopping” with a Gaussian PDF
• Assume a Gaussian with a fixed width, 𝜎 = 1

𝑥

𝜇

3

𝜇 < 𝑥 + 1.28155

x

90%
x

𝜇 = 𝑥 ± 1.64485

10% 5%

10%

90%

5%5%

Gary J. Feldman, Robert D. Cousins, Phys.Rev.D57:3873-3889,1998

Coverage is 85% for low μ!
Upper limit

Central interval

3𝜎 threshold
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Likelihood ratio & Neyman belt
• Feldman and Cousins proposed a criterion to define 

the Neyman belt based in a likelihood ratio test:
𝑅𝜇 = {𝑥 ∶ 𝐿(𝑥|𝜃)/𝐿(𝑥| T𝜃) > 𝑘𝛼}

• The value 𝑘𝛼 depends on the desired significance 
level 𝛼

x

𝐿(
𝑥|
𝜃)

1 − 𝛼

𝐿(
𝑥|
𝜃)
/𝐿
(𝑥
|
B 𝜃
(𝑥
))

• 𝐻0: 𝜃 = T𝜃, the best-fit value
• 𝐻1: 𝜃 = 𝜃, the specific value 

considered for the Neyman
belt construction
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Feldman-Cousins approach
• Application to the Gaussian case with non-negative mean 𝜇:

𝑥

𝜇
¦𝜇 = max(𝑥, 0)

Asymmetric errors

Upper limits

Usual errors 

Confidence intervals must be 
computed numerically, even for this 
simple Gaussian case!
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𝑃 𝑥 𝜇̂ =

1
2

for	 𝑥 ≥ 0

1
2𝜋

𝑒?G%/* for	 𝑥 < 0

𝑅H 𝑥 =
𝑃(𝑥|𝜇)
𝑃 𝑥 𝜇̂ = � 𝑒

? G?H %/* for	 𝑥 ≥ 0
𝑒?(GH?H%)/* for	 𝑥 < 0

Application to discrete variables, like 
event counting, raises issues that will be 
discussed in the following.



Upper limits for event counting
• The simplest search for a new signal consists of 

counting the number of events passing a specified 
selection

• The number of selected events 𝑛 is distributed 
according to a Poissonian distribution

• 𝐻1 : expect 𝑛 = 𝑠 + 𝑏	
• 𝐻0 : expected 𝑛 = 𝑏
• Given 𝑛 counts, compare with the two hypotheses 𝐻1

and 𝐻0

• Simplest case: 𝑏 is known with negligible uncertainty
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Counting, Bayesian approach
• Let’s assume the background 𝑏 is known with no uncertainty:

𝐿 𝑛; 𝑠 =
(𝑠 + 𝑏)"

𝑛!
𝑒)(2+F)

• A uniform prior, 𝜋(𝑠) = 1, simplifies the computation:

1 − 𝛼 =  
3

2NO

𝑃 𝑠 𝑛 𝑑𝑠 =
∫3
2NO 𝐿 𝑛; 𝑠 𝜋 𝑠 𝑑𝑠

∫3
*𝐿 𝑛; 𝑠 𝜋 𝑠 𝑑𝑠

• Inverting the equation gives
the upper  limit 𝑠NO

• For 𝑛 = 0,  𝑠NO does not depend on 𝑏:

𝛼 = 𝑒/^01

– 𝑠 < 2.303 (90% 𝐶𝐿)← 𝛼 = 0.1
– 𝑠 < 2.996 (95% 𝐶𝐿)← 𝛼 = 0.05
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𝛼 = 𝑒)2NO
∑/%3" (𝑠NO + 𝑏)/
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Counting, Bayesian approach
• Upper limits decrease as either  𝑏 or 𝑛 increases
• For 𝑛 = 0, upper limits are not sensitive on 𝑏 (prev. slide)

O. Helene. NIMA 212 (1983) 319

𝑠��

𝑛

𝑠��

𝑛

𝑏 𝑏
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Frequentist: zero events selected
• Assume we have negligible background (𝑏 = 0) and we measure zero 

events (𝑛 = 0)
• The likelihood function simplifies as:

𝐿 𝑛 = 0; 𝑠 = Poiss 0; 𝑠 = 𝑒)2
• The (fully asymmetric) Neyman belt inversion is as simple as follows:

𝑃 𝑛 ≤ 0; 𝑠NO = 𝛼	 → 	 𝑠NO = − ln𝛼	
• The results are by chance identical to the Bayesian computation:

𝑠 < 2.303 (90% 𝐶𝐿)← 𝛼 = 0.1
𝑠 < 2.996 (95% 𝐶𝐿)← 𝛼 = 0.05

• Despite the numerical coincidence, the interpretation of frequentist and 
Bayesian upper limits remain very different!

• Warning: this evaluation suffer from the “flip-flopping” problem, so the 
coverage is spoiled if you decide to switch from upper limit to a central 
value depending on the observed significance!
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Counting, Feldman-Cousins
• F&C intervals cure the flip-

flopping issue and ensure the 
correct coverage

– May overcover for discrete 
variables

• The “ripple” structure is due to 
the discrete nature of 
Poissonian counting

• Note that even for 𝑛 = 0 the 
upper limit decrease as 𝑏
increases (apart from ripple 
effects)

• If two experiment are designed 
for an expected background of 
–say– 0.5 and 0.01, the “worse” 
one has the best expected 
upper limit if they observe 𝑛 =
0, the most probable value

G.Feldman, R.Cousins PRD57 (1998) 3873
C. Giunti, PRD59 (1999), 053001

𝑠��

𝑏

𝛼 = 0.1
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Modified frequentist approach
• A modified approach was proposed for the first time when combining 

the limits on the Higgs boson search from the four LEP experiments, 
ALEPH, DELPHI, L3 and OPAL

• Given a test statistic 𝜆(𝑥), determine its distribution for the two 
hypotheses 𝐻1(𝑠 + 𝑏) and 𝐻0(𝑏), and compute:

𝑝©ª« = 𝑃 𝜆 𝑥 𝐻r ≤	𝜆¬­®

    𝑝« = 𝑃(𝜆 𝑥 𝐻� ≥	𝜆¬­®)

• The upper limit is computed, instead of requiring 
𝑝F\J ≤ 𝛼, on a modified p-value, 𝐶𝐿𝑠 ≤ 𝛼:

• Since 1 − 𝑝𝑏 ≤ 1, 𝐶𝐿𝑠 ≥ 𝑝F\J, hence
upper limits computed with the 
𝐶𝐿𝑠 method are always conservative 𝐶𝐿© =

𝑝©ª«
1 − 𝑝«

𝑝2+F

−2 ln 𝜆

𝑝𝑏

Note: 𝜆 ≤ 𝜆RST implies −2ln𝜆 ≥ −2ln𝜆RST
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Main 𝐶𝐿𝑠 features
• 𝑝F\J: probability to obtain a result which is 

less compatible with the signal than the 
observed result, assuming the signal 
hypothesis

• 𝑝𝑏: probability to obtain a result less 
compatible with background-only than the 
observed one

• If the distributions of the test statistic in the 
two hypotheses are very well separated and 
𝐻1 is true, then 𝑝𝑏 will tend to be small ⇒ 1 −
𝑝𝑏 ~ 1 and 𝐶𝐿𝑠 ~𝑝F\J, i.e: the ordinary p-value 
of the 𝑠 + 𝑏 hypothesis

• If the two distributions largely overlap, then if 
𝑝𝑏 will be large ⇒ 1 − 𝑝𝑏 tends to be small, 
preventing 𝐶𝐿𝑠 to become very small

• 𝐶𝐿𝑠 < 1 − 𝛼 prevents rejecting cases where 
the experiment has little sensitivity 

−2ln λ

exp.
for 𝑏

exp.
for 𝑠 + 𝑏

𝑝𝑏 ~ 0 𝑝2+F~ 𝐶𝐿𝑠

−2ln 𝜆

exp.
for 𝑏

exp.
for 𝑠 + 𝑏

𝑝𝑏 ~ 1
𝑝2+F < 𝐶𝐿𝑠
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𝐶𝐿2 =
𝑝2+F
1 − 𝑝F

=
𝑃(𝜆2+F ≤ 𝜆PQR)
𝑃(𝜆F ≤ 𝜆PQR)



𝐶𝐿𝑠 with toy experiments
• In practice, 𝑝𝑏 and 𝑝^_` are often computed in from 

simulated pseudo-experiments (“toy Monte Carlo”)

−2 ln 𝜆

Plot from LEP Higgs combination paper
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𝐶𝐿^ =
𝑁(𝜆^_` ≤ 𝜆���)
𝑁(𝜆` ≤ 𝜆���)

𝑝` =
𝑁(𝜆` ≥ 𝜆���)

𝑁���

𝑝^_` =
𝑁(𝜆^_` ≤ 𝜆���)

𝑁���



Event counting with 𝐶𝐿𝑠
• Let’s consider the previous event counting experiment, using 

𝑛 = 𝑛obs as test statistic
• In this case 𝐶𝐿𝑠 can be written as:

𝐶𝐿2 =
𝑃(𝑛 ≤ 𝑛PQR|𝑠 + 𝑏)
𝑃(𝑛 ≤ 𝑛PQR|𝑏)

• Explicitating the Poisson distribution, the computation gives the 
same result as for the Bayesian case with a uniform prior

• In many cases the 𝐶𝐿𝑠 upper 
limits give results that are very
close, numerically, to Bayesian
computations done assuming a
uniform prior

• But the interpretation is very
different from Bayesian limits!
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Nuisance pars. in Bayesian approach
• Notation below: 𝜇 = parameter(s) of interest, 
𝜃 = nuisance parameter(s)

• No special treatment:

𝑃 𝜇, 𝜃 𝑥 =
𝐿(𝑥; 𝜇, 𝜃)𝜋(𝜇, 𝜃)

∫ 𝐿(𝑥; 𝜇., 𝜃.)𝜋(𝜇., 𝜃.)d𝜇.d𝜃.

• 𝑃(𝜇|𝑥) obtained as marginal PDF of 𝜇 obtained 
integrating on 𝜃:

𝑃 𝜇 𝑥 = |𝑃 𝜇, 𝜃 𝑥 d𝜃 =
∫𝐿 𝑥; 𝜇, 𝜃 𝜋 𝜇, 𝜃 d𝜇	d𝜃
∫ 𝐿(𝑥; 𝜇., 𝜃)𝜋(𝜇., 𝜃)d𝜇.d𝜃
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Nuisance pars., frequentist
• Introduce a complementary dataset to constrain the nuisance 

parameters 𝜃 (e.g.: calibration data, background estimates from 
control sample…)

• Formulate the statistical problem in terms of both the main data 
sample (𝑥) and the control sample (𝑦):

𝐿 𝑥, 𝑦; 𝜇, 𝜃 = 𝐿 𝑥; 𝜇, 𝜃 𝐿(𝑦; 𝜃)
• Not always the control sample data are available

– E.g.: calibration from test beam, stored in different formats, control 
samples analyzed with different software framework…

– In some cases, may be complex and CPU intensive
• Simplest case; assume known PDF for “nominal” value of 𝜃nom

(e.g.: estimate with Gaussian uncertainty):
𝐿 𝑥, 𝜃 �4; 𝜇, 𝜃 = 𝐿 𝑥; 𝜇, 𝜃 𝐿(𝜃 �4; 𝜃)

Luca Lista Gran Sasso Hands-On 2023



Fitting control regions
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• In some cases, background parameters can be 
constrained from statistically independent control 
samples

– Consider possible signal contamination!
• Background yield can be measured in background-

enriched regions and extrapolated to signal regions 
applying scale factors predicted by simulation

• Complete likelihood function = product of likelihood 
functions in each considered regions, sharing common 
nuisance parameters

– Typically: background rates
Measurement of single-top production at LHC

Signal region:
two jets, one b tagged

t ̅t enriched region:
one extra jet required

W+jets enriched region
no b-tagged jet
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Systematic uncertainties
• Fit a Gaussian signal over an exponential 

background
• Assume a 30% uncertainty on the background 

yield with a log normal model may be 
assumed to avoid unphysical negative yields

• 𝑏 = °𝑏 𝑒𝛽, where our estimate 𝛽 is 
centered around zero with a Gaussian 
uncertainty 𝜎𝛽 = 0.3

b0 = true (unknown) value
b = our estimate
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𝐿 𝑚; 𝑠, 𝛽 = 	𝐿3 𝑚; 𝑠, °𝑏 𝑒𝛽 𝑃 𝛽; 𝜎S

𝐿3 𝑚; 𝑠, 𝑏 =
𝑒)(2+F)

𝑛!
𝑠

1
2𝜋𝜎

𝑒) /)T &/?U& + 𝑏𝜆𝑒)J/

𝑃 𝛽; 𝜎S =
1
2𝜋𝜎

𝑒)S
&/?UX

&



Profile likelihood
• Define a test statistic based on a likelihood ratio inspired by 

Wilks’ theorem:

𝜆 𝜇 =
𝐿(𝜇, TT𝜃 𝜇 )
𝐿(𝜇̂, T𝜃)

• 𝜇 is usually the “signal strength” (i.e.: 𝜎/𝜎th) in case of a search 
for a new signal

• Different ‘flavors’ of test statistics, e.g.: deal with unphysical 𝜇 <
0, ecc.

• The distribution of 𝑞𝜇 = −2 ln 𝜆(𝜇)may be asymptotically 
approximated to the distribution of a 𝜒2 with one degree of 
freedom (one parameter of interest = 𝜇) due to the Wilks’ 
theorem

Fix 𝜇, fit 𝜃

Fit both 𝜇 and 𝜃
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Systematic uncertainties
• The profile likelihood shape is broadened due to the 

presence of nuisance parameter β that model 
systematic uncertainties

• à Smaller significance for  discovery
• àLarger uncertainty on 𝑠

No bkg uncertainty
With 30% bkg uncert.

This implementation is based
on RooStats, a package, released
as optional library with ROOT
http://root.cern.ch
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Significance evaluation
• Assume 𝜇 = 0, if 𝑞0 = −2 ln 𝜆(0) can be approximated by a 𝜒2

with one d.o.f., then the significance is approximately equal to:
𝑍 ≅ 𝑞3

• The level of approximation can be verified with a computation 
done using pseudo experiments:

• Generate many toy samples with zero background and 
determine the distribution of 𝑞0 = −2 ln 𝜆(0), then count the 
fraction of cases with values
greater than the measured
value (p-value), and convert
it to Z:

              𝑍 = Φ)!(1 − 𝑝)

• Toy samples may be unpractical
for very large 𝑍

No bkg uncertainty
With 30% bkg uncert.

𝑍 ≅ 2×6.66 = 3.66

𝑍 ≅ 2×3.93 = 2.81
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Asymptotic approximations
• Asymptotic approximate formulae exist for most of adopted 

estimators, valid for 𝑁 → ∞, but in practice usable down to 
𝑁 ≈ 5.

• If we want to test 𝜇 and we assume data are distributed 
according to 𝜇ʹ, we can write:

−2 ln 𝜆 𝜇 =
𝜇 − ¦𝜇 ?

𝜎VT
? + 𝒪 1/ 𝑁

• where ¦𝜇 is distributed according to a Gaussian with average 𝜇ʹ
and standard deviation 𝜎VT? (A. Wald, 1943)

• Asymptotic approximations for 𝜎VT? can be determined and 
provide useful formulae

A. Wald, Trans. of AMS 54 n.3 (1943) 426-482

G. Cowan et al., EPJ C71 (2011) 1554
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Asymptotic approximations
• Under the true hypothesis 𝜇, 𝜇̂ is distributed around 𝜇

and the test statistic, neglecting the 𝒪 1/ 𝑁 term, is 
distributed according to a 𝜒¡ with one degree of 
freedom (Wilks’ theorem):

−2 ln 𝜆 𝜇 =
𝜇 − 𝜇̂ ¡

𝜎¢�
¡

• If 𝜇̂, instead, is distributed around a value 𝜇. ≠ 𝜇, the 
distribution of the test statistic is so-called non-central 
𝜒¡, which is known and can be computed by series 
expansion.
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Variations on test statistic

• Test statistic for discovery:	𝑞3 = ³−2 ln 𝜆 0 , ¦𝜇 ≥ 0
0, ¦𝜇 < 0

– In case of a negative estimate of 𝜇, set the test statistic to zero: consider 
only positive 𝜇 as evidence against the background-only hypothesis. 
Approximately: 𝑍 ≅ 𝑞!.

• Test statistic for upper limits:	𝑞T = ³−2 ln 𝜆 𝜇 , ¦𝜇 ≤ 𝜇
0, ¦𝜇 > 𝜇

– If the estimate is larger than the assumed 𝜇, an upward fluctuation 
occurred. Don’t exclude 𝜇 in those cases, set the statistic to zero

• Higgs test statistic:

As for upper limits statistic

Protect for unphysical 𝜇 < 0

G. Cowan et al., EPJ C71 (2011) 1554
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q𝑞Y =

−2ln
𝐿(𝑥⃗|𝜇,

SS⃗𝜃(𝜇))

𝐿(𝑥⃗|0, S⃗𝜃	(0))
𝜇̂ < 0

−2ln
𝐿(𝑥⃗|𝜇,

SS⃗𝜃(𝜇))

𝐿(𝑥⃗|𝜇̂, S⃗𝜃)
0 ≤ 𝜇̂ ≤ 𝜇

0, 𝜇̂ > 𝜇



Asimov datasets
• Convenient set to compute approximate values:

“We define the Asimov data set such that when one uses it
to evaluate the estimators for all parameters, one obtains
the true parameter values”

• Imagine that our only parameter is 𝜇. We would like to
have a dataset where the fit value is the true value 𝜇U.

• This can be done using as number of counts the
(non-integer) value 𝑛 = 𝜇U𝑠 + 𝑏

• In this case, we have:

−2 ln 𝜆e 𝜇 ≅
𝜇 − 𝜇U *

𝜎fH
*

• Reversing the above equation, we can estimate the variance of 𝜇̂ to be 
used in Wald’s approximation of the test statistic:

𝜎fH
* ≅ −

𝜇 − 𝜇U *

2 ln 𝜆e 𝜇

G. Cowan et al., EPJ C71 (2011) 1554
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Asimov datasets
• In practice: all observables are replaced with their expected value
• Expected values of yields are possibly non integer:

𝜆e 𝜇 =
𝐿e(𝜇, BB𝜃)
𝐿e(𝜇̂, B𝜃)

=
𝐿e(𝜇, BB𝜃)
𝐿e(𝜇U, B𝜃)

• The variance of the test statistic, in Wald’s approximation, is estimated 
as:

𝜎fH* ≅
𝜇 − 𝜇U *

−2 ln 𝜆e
• Median significance for discovery or exclusion (and their ±1𝜎 bands) 

can be obtained using the Asimov dataset 

med 𝑍T 𝜇U = 𝑞T,e
med 𝑍T 0 = 𝑞H,e

med 𝑍H 𝜇U = §𝑞H,e

G. Cowan et al., EPJ C71 (2011) 1554

For discovery using 𝑞0

For upper limit using 𝑞𝜇

Upper limits using q𝑞Y

In practice: all the 
interesting formulae are 
implemented in RooStats
package, released as 
optional library in ROOT
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Putting all together
• Search for Higgs boson in H→4l at LHC
• 1D, 2D, 3D: different test statistics using 4l invariant mass plus 

other discriminating variables based on the event kinematics
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Look-elsewhere effect not taken 
into account here
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Higgs exclusion
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“The modified frequentist construction CLs is adopted as the 
primary method for reporting limits. As a complementary 
method to the frequentist construction, a Bayesian approach 
yields consistent results.”

Agreed statistical procedure described in:
ATLAS and CMS Collaborations,
LHC Higgs Combination Group
ATL-PHYS-PUB 2011-11/CMS NOTE 
2011/005, 2011. 
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The look-elsewhere effect
• Consider a search for a signal peak over a background 

distribution that is smoothly distributed over a wide range
• You could either:

– Know which mass to look at, e.g.: search for a rare decay with a 
known particle, like Bs → 𝜇𝜇

– Search for a peak at an unknown mass value, like for the Higgs 
boson

• In the former case it’s easy to compute the peak significance:
– Evaluate the test statistics for 𝜇 = 0 (background only) at your 

observed data sample 
– Evaluate the p-value according to the expected distribution of your test 

statistic q under the background-only hypothesis, convert it to the equivalent 
area of a Gaussian tail to obtain the significance level:

𝑝 =  
W[B+

*
𝑓(𝑞|𝜇 = 0) , 	 𝑍 = Φ)!(1 − 𝑝)
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The look-elsewhere effect
• Searching for a peak at an unknown mass, the previous p-value has only a local

meaning, with probability to find a background fluctuation as large as your signal 
or more at a fixed mass value m:

𝑝 𝑚 = 	 
W[B+(/)

*
𝑓 𝑞 𝜇 = 0 d𝑞

• We need the probability to find a background fluctuation at least as large as your 
signal at any mass value (global)

• local p-value would be an overestimate of the global p-value 
• The probability of an over-fluctuation at least one mass value increases with the 

size of the searched range, roughly proportionally to the ratio of resolution over 
the search range, also depending on the significance of the peak

– Better resolution = less chance to have more events compatible with the same mass 
value

• Possible approach: let also m fluctuate in the test statistics fit:

¦𝑞3 = −2 ln 9(T%3)
9(VT; V/)

,  𝑝X7PQ = ∫GW[B+
* 𝑓 ¦𝑞3 𝜇 = 0 d¦𝑞3

For 𝜇 = 0	L doesn’t depend on m and Wilks’ theorem doesn’t apply
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Estimate LEE
• The effect can be evaluated by running many background-only Monte Carlo 

samples, determining the distribution of the maximum value of test statistic t𝑞 in 
the search range, and counting the fraction of samples with t𝑞 greater than the 
observed value 𝑢

• Approximate evaluation based on local p-value, times correction factors
(“trial factors”, Gross and Vitells, EPJC 70:525-530,2010)

𝑝X7PQ = 𝑃 ¦𝑞 > 𝑢 ≅ 𝑁Y +
1
2
𝑃(𝜒? > 𝑢)

Toy MC
Scaling

𝑁" 	is the average number of up-
crossings of the test statistic, can be 
evaluated at some lower reference 
level (toy MC) and scaled by:

q(m) t𝑞

q

f(q|μ=0)
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©𝑞 = max
L

𝑞(𝑚)

𝑁Y = 𝑁Y\ 𝑒
)(Y)Y\)/?



Practical application
• Higgs search at ATLAS
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Practical application
• Use the number of 𝜎, 𝑍, as test statistic: 𝑢 = 𝑍? is distributed as 

a chi-square
• Use the 0𝜎	level (𝑝 = 0.5) as level 𝑢3, then extrapolate to the 

minimum p-value, where 𝑍 ≅ 5, i.e.: 𝑢 = 𝑍? ≅ 5? = 25
• The number of upcrossings can be counted from the plot, and is 

equal to 𝑁3 = 9, which allows us to estimate: 𝑁3 = 9 ± 3
• Estimate the global p-value as: 

• 𝑝X7PQ ≅ 𝑁Y + !
?
𝑃 𝜒? > 𝑢  ≅ 𝑁Y + 3×10)Z  

• 𝑁Y ≅ 𝑁3 𝑒)([
&)3&)/?

• 𝑁Y ≅ (9 ± 3)𝑒)?[/? ≅ (3 ± 1)×10)[

• 𝑝X7PQ ≅ 3×10)[ + 3×10)Z ≅ 3×10)[ 	 ⟹ 𝑍 ≅ 4𝜎 instread of 5𝜎 

• A toy Monte Carlo would give a more precise estimate 
compared with this back-of-the envelope example
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Backup



2D intervals

x

y

1σ

2σ

1σ2σ

Width P1D P2D
1σ 0.6827 0.3934

2σ 0.9545 0.8647

3σ 0.9973 0.9889

1.515σ 0.6827

2.486σ 0.9545

3.439σ 0.9973

• In more dimensions one can determine 1𝜎 and 2𝜎 contours 
• Note: different probability content in 2D compared to one dimension
• 68% and 95% contours are usually preferable
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Contours in two dimensions
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Cousins-Highland hybrid approach
• Method proposed by Cousins and Highland

– Add posterior from another experiment into the likelihood definition
– Integrate the likelihood function over the nuisance parameters

𝐿\]Q^_` 𝑥; 𝜇 =  𝐿 𝑥; 𝜇, 𝜃 𝐿 𝜃8Pa; 𝜃 	d𝜃

• Also called “hybrid” approach, because a partial Bayesian 
approach is implicit in the integration

– Bayesian integration of PDF, then likelihood used in a frequentist way

• Not guaranteed to provide exact frequentist coverage!
• Numerical studies with pseudo experiments showed that 

the hybrid CLs upper limits gives very similar results to 
Bayesian limit assuming a uniform prior

NIM A320 (1992) 331-335
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From PDG Review…
• “The intervals constructed according to the 

unified procedure [FC] for a Poisson variable 𝑛
consisting of signal and background have the 
property that for 𝑛 = 0 observed events, the upper 
limit decreases for increasing expected 
background. This is counter-intuitive, since it is 
known that if 𝑛 = 0 for the experiment in question, 
then no background was observed, and therefore 
one may argue that the expected background 
should not be relevant. The extent to which one 
should regard this feature as a drawback is a 
subject of some controversy”
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Observations on the 𝐶𝐿𝑠 method
• “A specific modification of a purely classical statistical 

analysis is used to avoid excluding or discovering signals 
which the search is in fact not sensitive to”

• “The use of  𝐶𝐿𝑠 is a conscious decision not to insist on the 
frequentist concept of full coverage (to guarantee that the 
confidence interval doesn’t include the true value of the 
parameter in a fixed fraction of experiments).”

• “confidence intervals obtained in this manner do not have 
the same interpretation as traditional frequentist 
confidence intervals nor as Bayesian credible intervals”

A. L. Read, Modified frequentist analysis of search results 
(the CLls method), 1st Workshop on Confidence Limits, CERN, 2000
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LEP, Tevatron, LHC Higgs limits
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